ClimateWest, a central hub for climate services in Manitoba, Saskatchewan, and Alberta, is proud to host Alberta's Adaptation Resilience Training module recordings and resources.

Check out climatewest.ca for all training material available through ART and other initiatives.

The aim of the Adaptation Resilience Program (ART) is to build the capacity of professionals in Alberta to adapt to climate change. This module was recorded in September, 2021.

Professionals across the Prairie region may find this training useful.

Supported by the Natural Resources Canada's Building Regional Adaptation Capacity and Expertise (BRACE) Program and the Government of Alberta

Adaptation Resilience Training

Mountains vs. Molehills: Identifying Climate Risks

Owen James, AE Practice Leader Asset Management

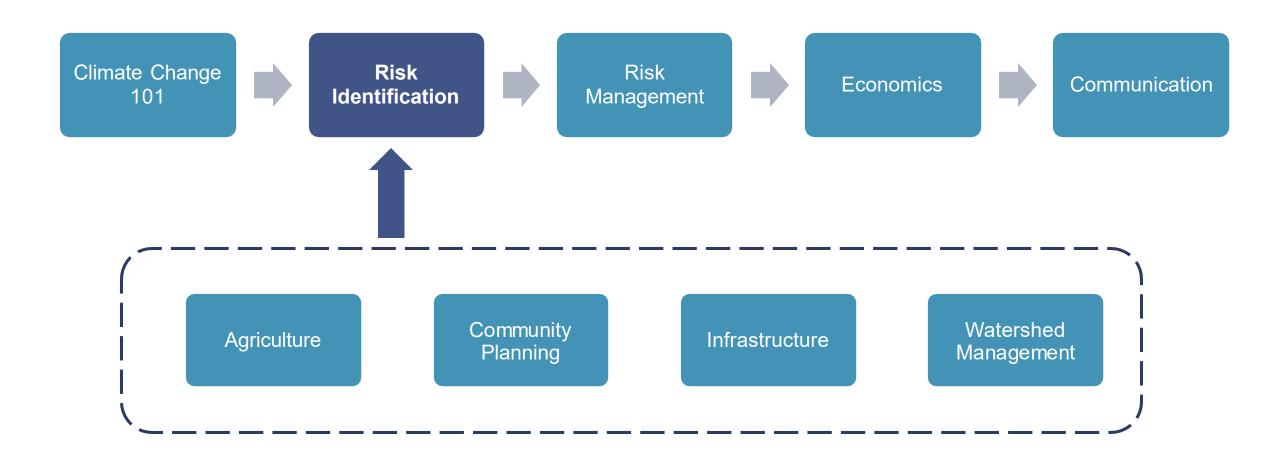
September 8, 2021

"Sooner or later, everyone sits down to a banquet of consequences"

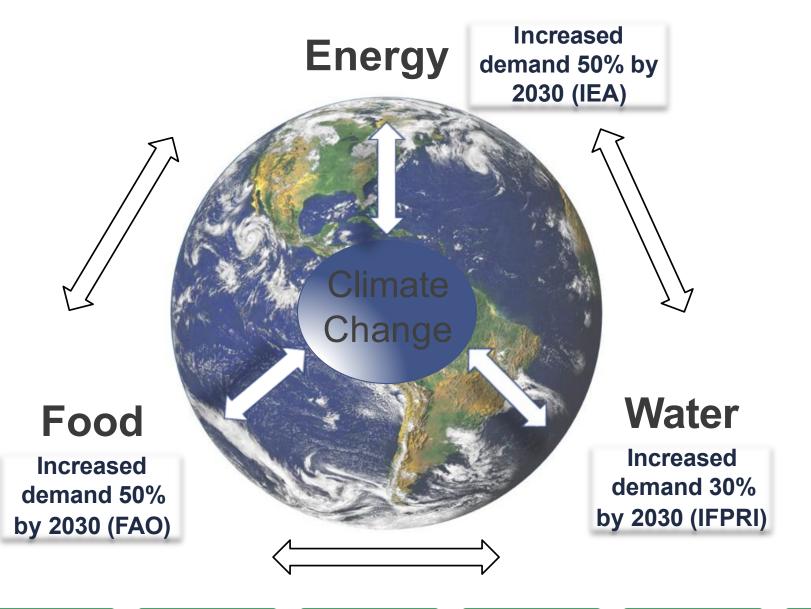
Robert Louis Stevenson

RISK

service


Societal organization asset environment organization security financial project climate disaster

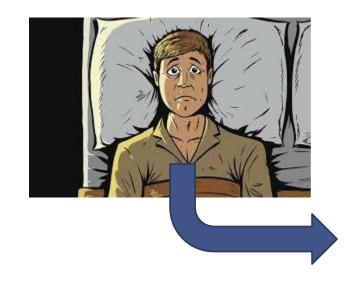
Module Overview


- Introduction
- Purpose of risk identification and assessment
- Topic 1: Risk and other key terms
- Topic 2: What has risk got to do with climate change
- Topic 3: Identifying risks
- Topic 4: Assessing and evaluating risks
- Questions and discussion

Preamble: Purpose of Risk Identification & Assessment (5 mins)

Context and relationships with other modules

The global challenge is enormous


Climate change is one of the most significant challenges

We live in a very complex world and face many challenges

Purpose of risk identification & assessment

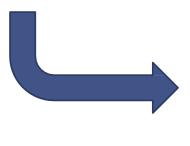
Helps you manage the things that keep you awake at night

Reviewed the risks?

Identified actions?

Actions initiated?

✓ Action status?


Flooding / fire / heat vulnerabilities

Flood barriers/reinforcement, fire smarting

Yes / No / awaiting funding

Complete / in progress / not started

✓ Risk being managed? Yes / No / What if investment is delayed?

Risk in CC Purpose Identifying Wrap-up Intro Terms Assessing

Polling Question

Key Terms

 Hazard / threat – A physical process or event that can harm human health, livelihoods or natural resources

Something that could cause something bad!

 Vulnerability – The degree to which a system is susceptible to, and unable to cope with, the adverse effects of climate change Something that could be negatively impacted by a hazard

Risk – The effect of uncertainty on objectives

Possibility of something bad happening

Key Terms

- Likelihood / probability / uncertainty—The
 chance that something will happen
- Consequence / impact / severity / exposure –
 the (extent of) result or effect of an action or
 condition or event

Reflects some of the uncertainty

How big or bad (or good) is the impact going to be

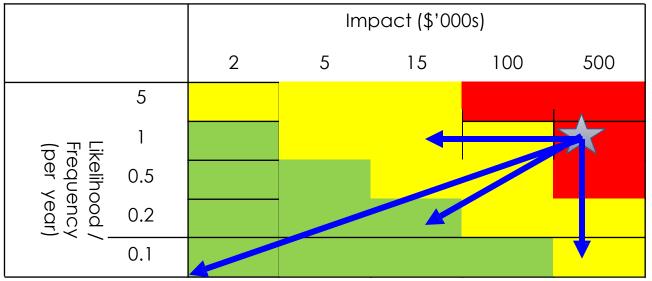
What do we mean by "Risk"?

Risk: The effect of uncertainty on objectives

Effect – some sort of **consequence**Uncertainty – probability / possibility / **likelihood**Objectives – the things you are trying to achieve

Risk = Consequence x Likelihood

Likelihood	Consequence				
Likelinood	Insignificant	Minor	Moderate	Major	Severe
Frequent					
Likely					
Possible					
Unlikely					
Rare					


^{*} Also known as a heat map or risk matrix.

Some more terms

- Risk appetite / risk tolerance—
 The amount of and type of risk that an organization is prepared to pursue, retain or take
- Residual risk The risk remaining after defined actions have been taken

Topic 2: What has risk got to do with climate change (10 mins)

Why is Climate Change important

Will wildfire refugees in Canada finally spur action on climate change? BY RYAN MEILI MAHLI BRINDAMOUR | JULY 23, 2015

B.C. salmon prices set to skyrocket with climate change, according to new study

Report predicts a sharp decline in B.C. fish numbers due to climate change

Climate change is killing off bumblebees: study

Unlike other animals, bumblebees can't seem to move north into cooler areas

3y Emily Chung, CBC News Posted: Jul 09, 2015 2:00 PM ET | Last Updated: Jul 14, 2015 9:28 AM ET

Is this drought caused by climate change? By Charles Mandel in News, Politics I July 13th 2015

Climate change is threatening these 10 species in Canada

Jackie Dunham CTVNews.ca Writer

The ongoing collapse of the world's aquifers

wired.com | Jan. 20

As the growing human population and more intense droughts brought on by climate change are putting ever more stress on water supplies, land is su...

David Pocock warns of devastating impact on sport if climate crisis inaction continues

Sleeping Giant: Canada's Wildfire Risk inderwriter in the state of the

Identifying

Intro Risk in CC Purpose


Terms

Assessing

Wrap-up

Insured losses due to weather

Top Damage-Causing Severe Weather Events in 2019

JANUARY

Winter Storm in Eastern Canada - \$40 Million

FEBRUARY

Winter Storm in Ontario- \$70 Million
Winter Storm in Southern Ontario - \$48 Million

MARCH

Two Winter Storms in the GTA and Eastern Canada - \$114 Million

APRIL - MAY

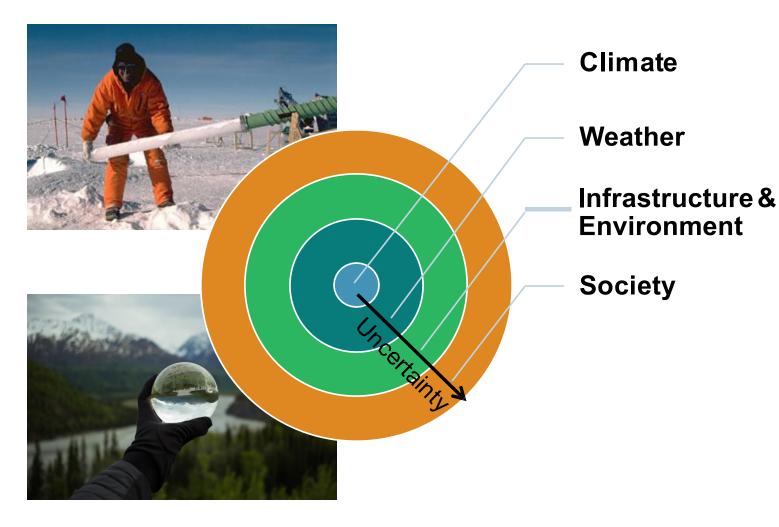
Floods in Quebec and New Brunswick - \$208 Million

JULY - AUGUST

Hailstorms in Western Canada- \$181 Million

SEPTEMBER

Hurricane Dorian in Eastern Canada - \$105 Million


OCTOBER

Storm in Eastern Canada- \$250 Million

Source: Insurance Bureau of Canada

Relationships between climate change and society

- These interactions
 create layers of
 uncertainty that requires
 huge interpretation.
- It is not a precise science and can sometimes feel like crystal ball gazing.

Using this information in risk assessment

Do we understand these relationships?

Climate

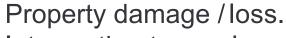
Likelihood

Weather

What are the likelihoods – today / tomorrow? What will be the impacts?

Infrastructure & Environment

Society


Consequence

What are the consequences and how severe? Measure impacts and benefits here.

Some consequences to consider:

Flooding, pollution.

Interruption to supply.

Water quality.

Safety.

Identifying

Inconvenience / delay.

Organizational impacts.

Intro Purpose Terms

Risk in CC

Assessing

Wrap-up

Topic 3: Identifying risks (10 mins)

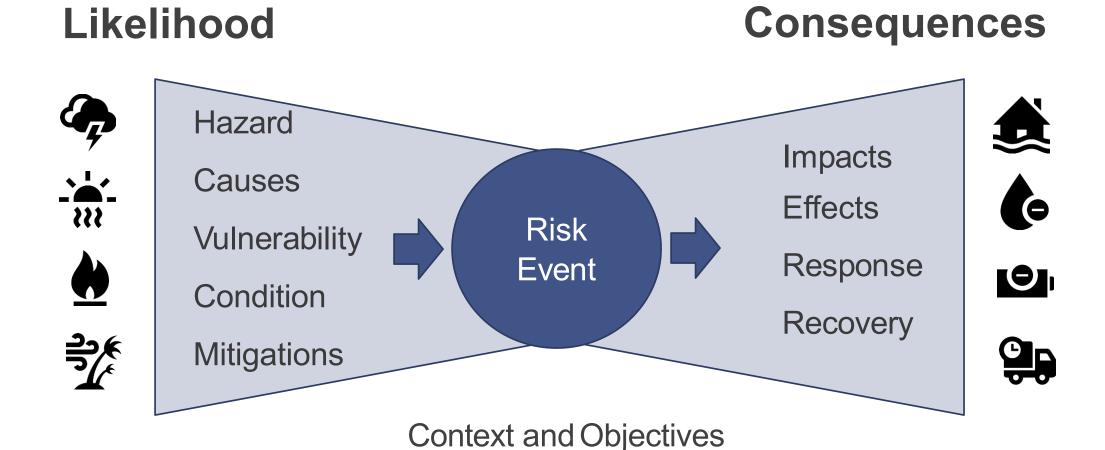
Risk identification process

Understand objectives Identify the hazards Identify vulnerabilities Record the risks

Context: What is important to you / your business?

What climate hazards do we face?
How do those hazards change over time?

What systems are sensitive to those hazards?


Do you already have control measures in place?

Are they effective?

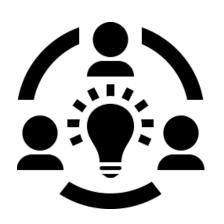
Who needs to know?

Risk assessment may be unique to your business

Describing risk

Intro Purpose Terms Risk in CC Identifying Assessing Wrap-up

Built / Social / Natural / Economic


Risk identification

- Very much a brain-storming process
- Get relevant stakeholders involved business owners, scientists, engineers, government
- Use tools/matrices as prompts to help you such as:
 - Public Infrastructure Engineering Vulnerability Committee (PIEVC) Protocol developed by Engineers Canada

Building Adaptive and Resilient Community (BARC) developed by ICLEI

	Fire	Drought	Wind	Flood	Tornado
Bridges & culverts				✓	
Buildings & structures	✓		✓	✓	✓
Rural communities	✓	✓		✓	
Roads				✓	
Buried utilities				✓	
Natural environments	✓	✓		✓	

Begin to build information – where, when, who, extent, why, existing controls

Intro

Purpose

<u>Terms</u>

Risk in CC

Identifying

Assessing

Wrap-up

Risk evaluation

Use the basic evaluation of risk

Risk = Consequence x Likelihood

Likelihood	Consequence				
LIKEIIIIOOG	Insignificant	Minor	Moderate	Major	Severe
Frequent					
Likely					
Possible					
Unlikely					
Rare					

^{*} Also known as a heat map or risk matrix.

Likelihood evaluation

But what do these words mean?

Common approach:

Likelihood	Score
Frequent	5
Likely	4
Possible	3
Unlikely	2
Rare	1

VS

How soon?	How frequent?	Likelihood
	Twice in one year	2
Within a year	Once per year	1
Within two years	Once every two years	0.5
Within five years	Once every five years	0.2
Within ten years	Once every ten years	0.1

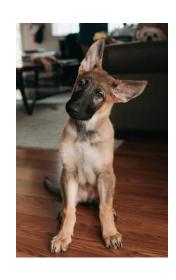
 Better to adopt something a bit more meaningful and continuous

Understanding likelihood

Likelihood Likelihood of service Likelihood = of event being impacted Where data is not present, Today we rely on professional 2050? Asset vulnerability 2080? judgement. Return period StandbyAvailability Data lends itself to more Spares Availability/ sophisticated and robust Obsolescence analysis **Process Criticality** Local conditions **Operational Practices** /Resourcing Professional Judgement

Consequences

There may be many consequences associated with a hazard and each


consequence could have a different likelihood

- Personal injury or loss health / injury / fatality
- Service loss water supplies / property flooding / congestion
- Economic loss damage / business / response costs
- Social loss lost time / inconvenience
- Environmental loss pollution / degradation / wildlife

Consequence evaluation

But what do these words mean? Common approach:

Consequence	Score
Severe	5
Major	4
Moderate	3
Minor	2
Insignificant	1

Consequence Equivalence

Consequence equivalence helps us to compare the severity of different types of events and scale them.

	Very Low	Low	Moderate	High	Extreme
People	Trips	Minor Injury	Major Injury	Severe / multiple injuries	Fatalities
Environment	Temporaryloss of low grade habitat	Minor pollution	Moderate pollution	Major pollution Seasonal loss of habitat	Permanent loss of habitat
Critical Service	Hour - Few people	Day – few people Hour – lots of people	Week – few people Day – lots of people	Month – few people Week – lots of people	Month – lots of people
Non-Critical service	Hour	Day	Week	Month	Months/Year +
Financial	\$5k	\$50k	\$250k	\$500k	Millions

^{*} This is an example, but these will be determined for each risk assessment based on the scale and type.

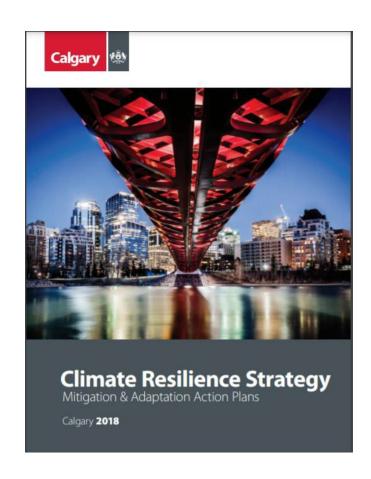
Consequence: How do events affect Society?

- Event Response
- Water Service Disruption
- Business Loss
- Evacuation & Rehousing
- Damage & Recovery
- Environmental Loss
- Public Health

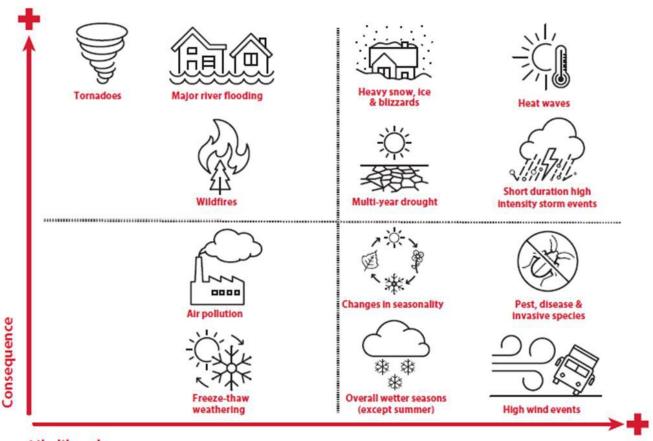
Flooding in Mytown - Likely Impacts

Impact Category	Economic Risk
Property Damage	\$400M
Business loss	\$300M
Event management	\$2M
Traffic and other economic loss	\$10M
Health & safety	\$3M
Total event impact	Approx. \$715M

Likelihood (today)	1 in 100 yrs
=	0.01
Risk =	\$7M


Likelihood (2050)	1 in 20 yrs
=	0.05
Assume 7 mpact	\$1.5B
Risk =	\$75M

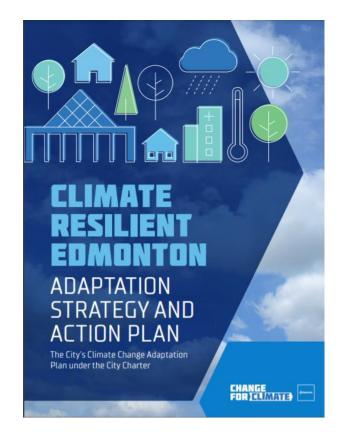
Plotting risk in risk space


- A risk like this is on the watch list today (yellow)
- But will become unacceptable by 2050

Climate Adaptation Risk Assessment Example

Calgary's Climate Risks profile

Likelihood


Source: Climate Resilience Strategy, Mitigation & Adaptation Action Plans, City of Calgary, 2018.

Retrieved from: https://www.calgary.ca/uep/esm/climate-change/climate-actions.html

Climate Adaptation Risk Assessment Example

Vulnerability and Risk Assessment

While multiple inputs were used to develop this strategy, one of the primary tools was the stakeholder-led vulnerability and risk assessment. This assessment helped to define Edmonton's adaptation needs by identifying areas of highest vulnerability (see Chapter 4).

Source: Climate Resilient Edmonton, Adaptation Strategy and Action Plan, City of Edmonton, 2018. Retrieved from:

https://www.edmonton.ca/city_government/environ mental_stewardship/climate-changeadaptation.aspx

Key takeaways for risk identification . . .

- 1. Climate risk is one of many different types of risk.
- 2. There are key terms that are often used ambiguously. Don't assume that everyone understands your terms.
- 3. We all have a different tolerance for risk.
- 4. When we describe risk we should consider causes, likelihood and consequences.
- 5. Risk identification is essentially a brainstorming process. We need to get the right brains involved to help us.
- Quantifying risk in dollar terms helps us to evaluate and make risk decisions.

DISCLAIMER

All information in this presentation is intended for non-commercial use. Information may not be copied, reproduced, republished, posted, transmitted, displayed, distributed, modified, merged with other data, published in any form or create derivative works from this information without the owner's prior written approval. By continuing to use this presentation, you confirm agreement with, and acceptance of, the foregoing conditions of use.

To inquire about obtaining permissions, please send a request to AE https://www.ae.ca/contact or ClimateWest (info@climatewest.ca).

THANK YOU!

If you have any questions, please contact <u>info@climatewest.ca</u>

To download this presentation and additional resources please visit: climatewest.ca

