Climate Change Risk Assessment: Core Principles for All Sectors

 An introductory module on Climate Change Risk Assessment Objectives, Risk Assessment Core Principles and Approaches.

MANITOBA CLIMATE RESILIENCE TRAINING

1

MANITOBA CLIMATE RESILIENCE TRAINING

Supported by Natural Resources Canada's Building Regional Adaptation Capacity and Expertise (BRACE) Program

2

Training Module Outline

- Purpose and Objective of Climate Change Risk Assessment (CCRA)
 - Key Terms
 - · Climate Change as a Mechanism of Risk
- Identifying Climate Hazards
 - · Risk Estimation and Analysis
 - Combining Likelihood and Consequence to Estimate Risk Levels
- 3 Tiers of CCRA
 - · What is a Tier 1 CCRA?
 - · What is involved in a Tier 2 CCRA?
 - · Tier 3 CCRA Characteristics.

3

3

Who This Training Is For

- This course was developed to provide foundational concepts in CCRA to all Manitoba BRACE MCRT Sectors.
- This course is a prerequisite for the design-oriented CCRA Course:

"Infrastructure Climate Risk Assessment Featuring the PIEVC Process"

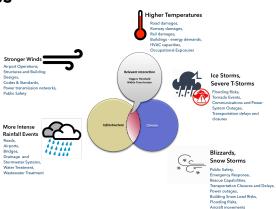
DILLON

4

Climate Change Risk Assessment (CCRA): Fundamentals

- CCRA is a process used to help business identify their climate change-induced risks from emerging climate change impacts. A process with 3 key steps:
 - Identify Climate Hazards and Anticipated Impacts
 - Assess and Prioritise Risks
 - Plan to Reduce Identified Risks
- CCRA answers the question "What might the future look like for us and what climate conditions will we need to adapt to?"
- The process looks at impacts to
 - People
 - Property
 - Operations
 - Environment

Image Sources: R Rempel, CBC Manitoba, CBC Manitoba


- 5

5

Climate Change Risk Assessment: A Process to Address Climate Risks for Business

- Climate change induces several key risks to businesses, infrastructure providers.
- Risks stem from impacts to critical infrastructure, services, people
 - (transport, drainage, utilities, etc.)
- Risks lurk in other areas that are important to businesses, communities

DILLON

6

Responding to Climate Impacts: 3 Options Available

- For Climate Change, businesses have 3 responses available:
- 1. Do Nothing Business As Usual
 - Leave your business prone to impacts: Often expensive, disruptive.
 - NOT considered a viable option.

Image Credits: Huffington Post, CBC North

7

7

Responding to Climate Impacts: 3 Options Available...

- Only two viable responses remain:
- 2. Mitigate Emissions causing Climate Change
 - Apply strategies to reduce the Greenhouse Gas emissions that cause climate change

 Implement measures or changes to increase your business' ability to cope with climate impacts Natural Cycles

Climate Change

Human Activity

Impacts and Vulnerability

Mitigation (of climate change via Circle Reduction and States)

Response

Response

Build Response

Widenability

Adaptation

In Impacts and Vulnerability

In Impacts and Vulnerability

Adaptation

In Impacts and Vulnerability

In Impacts and Vulnerability

Adaptation

In Impacts and Vulnerability

In Impacts and Vulner

Climate Change Risk Assessments provide the critical decision support information to inform your risk reduction planning.

Defining Key Terms

Risk can be described in several ways, but at its essence, **risk** is the possibility or probability of suffering a harm or loss, or the possibility of benefiting from an opportunity.

- A source of opportunity to business
 - E.g. higher temperatures mean a longer open water season, so my lodge may see opportunity to extend operations for a longer fishing season.
- A hazard or threat to the business. This is a "downside" risk.
 - E.g. wildfire events could cause loss of structures on our site property.
- Risk is the effect of uncertainty on objectives (ISO 31000).

9

Important Risk Considerations

- Any job or activity involves some level of hazard or risk.
- When risk is acknowledged, there is then a need for safety.
- Many businesses develop Safety Plans to manage their known risks.

10

How Much Risk?

- We experience two kinds of risk:
 - Perceived Risk: a subjective judgement made by an individual
 - Actual Risk: the quantifiable aspects of risk (data on likelihood, impact severity of the risk)
- Our perceived risk is not always in line with actual risk.

11

11

Defining Key Terms...

Perceiving Risk (cont'd)

- Our perceived risk is not always in line with actual risk
- For example, more people die each year from falling out of bed (450 persons/year in USA) than they do from shark attacks.
- This means the actual risk of death by falling out of bed is higher than from a shark attack...

but

 Many ocean swimming tourists perceive greater risk from the potential shark attack than from falling out of the bed in their hotel room.

DILLON

12

Defining Key Terms: Components of Risk

 At its essence, risk is the product of two components:

 $R = P \times S$

Where those components are:

P= Probability (Likelihood)

S= Severity of the consequence of an event, *should it occur*.

Probability/Likelihood:

If numerical data-based, call it <u>Probability</u>
If qualitative, description-based, call it <u>Likelihood</u>

13

13

Risk Characteristics: Low/High, High/Low Events

Image Credits: Reuters

Since risk is the combined effect of probability and severity **both** elements must be considered...

Very low likelihood and high severity can still be a serious risk:

- Low Probability, High Impact Severity Example: Japan's Fukishima Nuclear Reactor:
 - Earthquake triggers tsunami, causing massive floodwave,
 - Main power supply fails
 - Backup power systems flood and fail no power for reactor cooling
 - loss of reactor cooling means multiple reactor
 meltdown
- <u>Catastrophic Severity</u> resulting from this very low likelihood, high severity event.

14

Risk Characteristics: Low/High, High/Low Events

Since risk is the combined effect of probability and severity **both** elements must be considered...

Very high likelihood and low severity may be a very low risk

- High Probability, Low Severity Example: Winnipeg's Forks Riverwalk:
 - River levels fluctuate due to spring runoff, seasonal rains
 - Large, high intensity rainstorms occur
 - Flash runoff from rains enters river, water levels rapidly rise
 - Riverwalk is flooded from rising water levels. Floods persist for parts of the season.
- Low Severity from this high likelihood, low severity event.
 The Riverwalk is designed to be routinely flooded, so very high likelihood of flooding, but impacts are low risk they just rinse off the river mud and re-open.

15

15

Quiz

Q: In CCRA, the level of risk can be calculated by multiplying the likelihood/probability of a climate hazard times what other factor?

16

Quiz

Q: In CCRA, the level of risk can be calculated by multiplying the likelihood/probability of a climate hazard times what other factor?

A: Correct answer: (c)

- a) The cost of the climate impact.
- b) The probability of the impact being harmful along with how disruptive the impact could be.
- c) The severity of the consequence from the climate event, when that climate event takes place.
- d) The probability of the climate event along with how disruptive the impact could be.

17

17

Risk Characteristics

- In an ideal world, we have access to all the data that allows us to do a statistical analysis and generate numerical probabilities.
- The world is often not ideal, and we often lack data sufficient to create precise numerical values, so we then rely on historical, operational and other experience to assign a descriptive, nonnumerical classification).
- Both approaches are acceptable, and <u>usually necessary</u>.
 - Its unusual to have data in hand for everything.

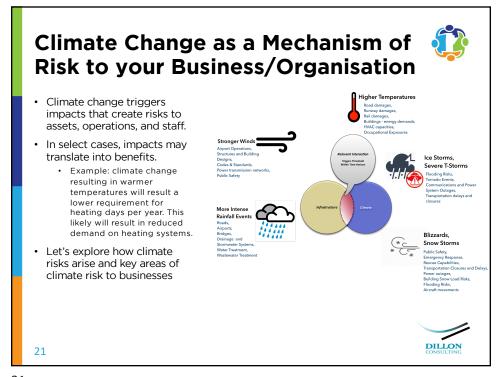
Qualitative Definitions of Probability: Aviation Industry

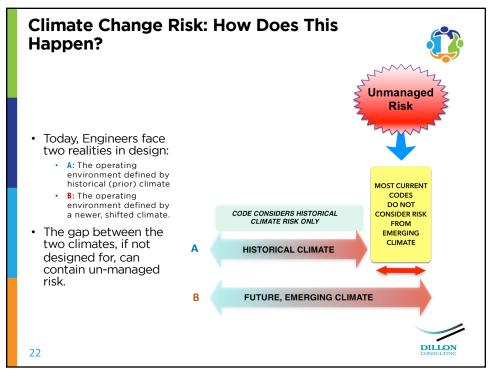
- <u>Extremely Improbable</u>: should virtually never occur
- Extremely Remote: Unlikely to occur when considering several systems of the same type, but has to be considered as being possible
- Remote: Unlikely to occur during the total operational life of each system, but may occur
- Reasonably Probable: May occur once during the total operational life of one system
- Erequent: May occur once or several times during operational life

19

19

Quantitative Definitions of Probability: Aviation Industry


- Extremely Improbable: < 10⁻⁹ per flight hour (billionths)
- Extremely Remote: 10-7 to 10-9 per flight hour (millionths to billionths)
- Remote: 10-5 to 10-7 per flight hour (hundred thousandths to millionths)
- Reasonably Probable: 10-3 to 10-5 per flight hour (thousandths to hundred thousandths)
- Frequent: 1 to 10-3 per flight hour (one to thousandths)


Source: ICAO Doc 5859 – Safety Management Manual

20

Climate Change-Induced Risk to Businesses, Communities

- Climate Change has potential to induce several key risks to the businesses and communities:
 - Regulatory Risks
 - · Physical Risks
 - Risks to Reputation
 - · Litigation Risks
- For business continuity and reputational credibility, businesses need to anticipate risks in each of these areas

Image: CBC

DILLON

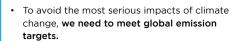
23

23

Regulatory Risks

- Regulations always evolve with time. Climate change means new regulations will continue to be introduced, joining many already in effect in two main areas:
 - Traditional Regulation: Permits, Building Codes, Energyefficiency requirements
 - **2.** Market-Based Regulation: carbon taxes, fuel tariffs, emissions trading.

Image: The Economist, Sept. 2019



24

Regulatory Risks...

- Newer regulations take several forms:
 - Improved vehicle efficiency requirements
 - Stronger efficiency requirements in residential and commercial sectors
 - · Increased reliance on renewables
 - · Strengthened emission regulations
 - Steps to regulate emissions that were previously not regulated.

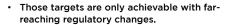
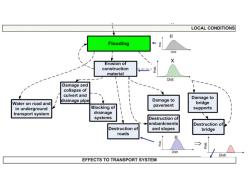


Image: Daily Energy Insider


25

25

Physical Risks

- Important for businesses to review their operations, movements, supply sources for sensitivity to climate impacts
- What systems does your business rely upon and what are the sensitivities to climate for those systems?
- Operational exposure to physical risks depends on
 - Sector of the business (any issues with your supply chain?)
 - · Location where business operates

Source: VTT Technical Research Centre of Finland, 2011

26

Reputational Risks

 In today's economy, business reputation represents a significant share of brand value:

- How your business addresses climate change, sustainability concerns will have an impact on its reputation
- · Risks to business reputation are greater for
 - Sectors with high emission levels
 - Sectors that interface directly with the public
- Failure to comply with legislation can damage your reputation
- Increasingly, sectors such as energy, aviation, automobile industries are expected to act beyond basic legal requirements.

27

27

Legal Risks

Evolving and increasing legislation means higher risk of litigation in key areas affecting all sectors:

- Actions targeting heavy emitters
- Legal challenges related to emerging jurisdictional carbon controls
 - Carbon regulation expanding in Canada, and globally
- Legal scrutiny of greenhouse gas emissions, and Climate Risk Disclosure

28

Climate Change Risks to Operations

It boils down to this:

Climate change is operating environment change.

- Climate change will be more disruptive, for longer than COVID-19 has been to business, communities.
- There is no vaccine for climate change.
- Changes, and their effects, can create risk for company/community operations.
 - · Supply chain disruptions
 - Water quality and supply issues for water-dependent operations/processes
 - Cooling for IT systems, controls

29

29

Climate Change Risks to Assets

- Climate Change is operating environment change.
- Changes happening where your assets operate will pose risks to company assets due to impacts from:
 - · Wildfire events
 - · Overland flooding
 - · Extreme heat events
 - Drought
 - Severe storms
 - Increased Snowloads

"Among S&P 500 Companies, 60% own assets that are at high risk of at least one type of climate change physical risk."

"The Big Picture on Climate Risk", S&P Global, 2020

30

Climate Change Risks to Staff

Climate Impact	Mechanisms	Staff Impacts
Extreme Heat Events	Prolonged exposure to extreme heat.	Heat stressHeat strokeHeat exhaustion
Air Pollution	Changes in ground level ozone and particulate pollution levels	Heart diseaseRespiratory diseaseAllergic reactions
Extreme Weather Events	 Floods, landslides, storms, lightning, wildfires, drought 	Occupational fatalitiesInjury, disease, mental stress
Biological Hazards	Changes in Temperature and Rainfall affect pathways for pathogens, invasive species, etc.	 Vector-borne disease Mold-related asthma Allergies
Indoor Climate	 Higher temperatures stress existing climate control. 	Indoor air quality degradationHeat stress
31		NIOSH, 2016

 Climate Change and its effect on environment can also pose risks to both indoor and outdoor workers.

31

Quiz

Q: Climate Change has the potential to create risks in key areas important to businesses and communities. From the list below, which of the following risks would fit into those key climate risk areas?

- a) Damage to a business asset
- b) Damage to the trust in your business' brand or product
- c) Risk of Fear of Missing Out
- d) Legal action to compensate for costs associated with a climate disruption or failure
- e) Increased Sustainability Targets

32

Quiz...

Q: In CCRA, the level of risk can be calculated by multiplying the likelihood/probability of a climate hazard times what other factor?

A: Correct answers: (a), (b), (d), (e)

(a) is valid, as this is a Physical Risk

(b) is valid, as this is a Reputational Risk

(c) is INCORRECT, as FOMO is not an area of climate risk to business

(d) is valid, as impacts from climate that affect your customers <u>may</u> result in legal action against your company. **Risk of litigation.**

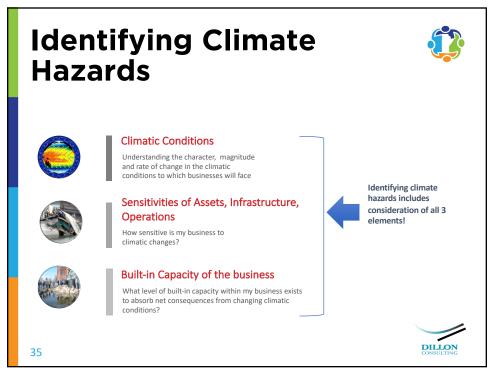
(e) is valid, as increased sustainability targets may occur due to **Risk of New Regulations** to respond to GHG reduction and environmental sustainability

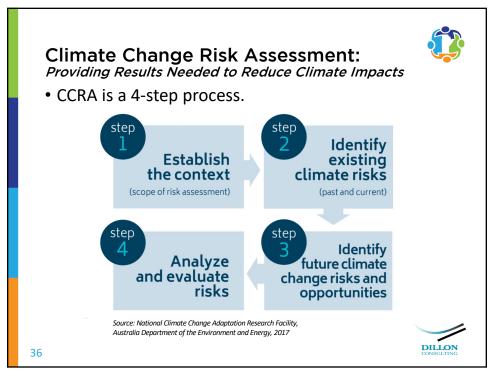
33

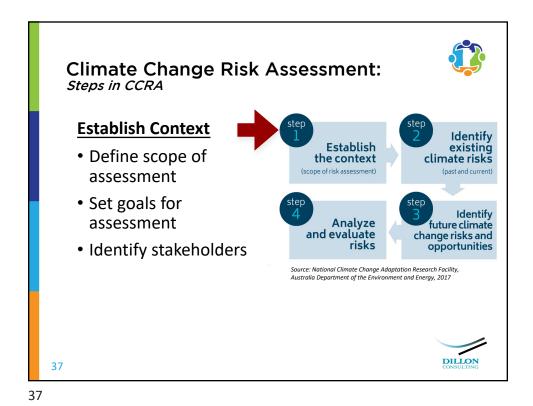
33

Defining Climate Hazards

• A Climate Hazard is...

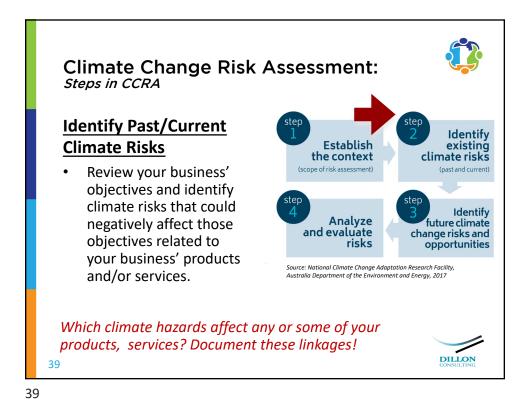

.."the potential occurrence of natural, physical event or trend that may cause loss of life, injury or other health impact, as well as damage and loss to property, infrastructure, livelihoods, services, ecosystems and environmental resources."


Intergovernmental Panel on Climate Change (IPCC), 2016



DILLON

34



Climate Change Risk Assessment: Steps in CCRA **Step 1 Context Business Goal** Description Minimise loss of Maintain services Some example business infrastructure from essential goals and their services infrastructure descriptions Minimise Maintain supplies disruption of of critical supply chain materials Minimise injury, Preserve and disease or enhance public hospitalization to health and safety customers, staff, suppliers Minimise loss of Maintain business economic activity continuity DILLON 38

38

Climate Change Risk Assessment: Steps in CCRA

Risk Cause Sudden Onset or

Identify Past/Current Climate Risks...

Identify high priority risk events that can be considered in the risk assessment.

Risk Cause	Sudden Onset or Ongoing Event?	Impact Concern
Change in average temperatures (air, river, lake)	Ongoing	SeasonalityAquatic lifeWinter road network
Increase in extreme heat events	Sudden onset	 Human health, heat exhaustion Operational limitations
Increases in Extreme Precipitation	Sudden onset	Overland floodingRoad washouts
Changes in seasonal precipitation (snow, rain)	Ongoing	 Downed power lines Ice accretion and slip/fall hazards Drought
Change in wind patterns and speeds	Ongoing	Airborne debris, building damages Tree limb failure and utilities (hydro, etc.), wildfires

DILLON CONSULTING

40

40

Climate Change Risk Assessment: Providing Results Needed to Reduce Climate Impacts

<u>Identify Future Climate</u> Risks and Opportunities

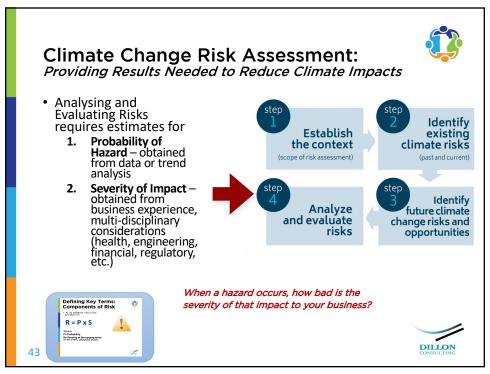
- Make a list of your exposed assets/services
- List all the weather and climaterelated events that could disrupt or damage your assets/services

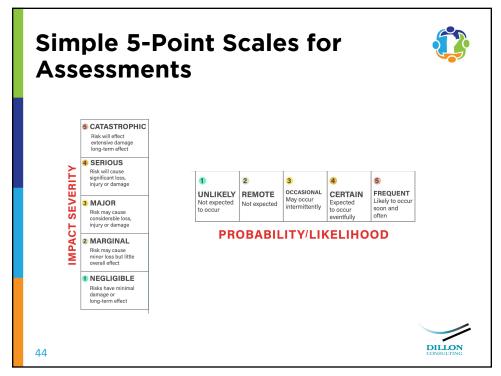
What aspects of your assets, operations, products/services, staff are impacted by these hazards?

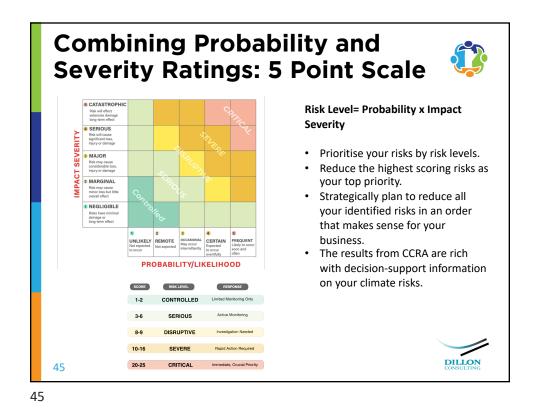
41

41

Climate Change Risk Assessment: Providing Results Needed to Reduce Climate Impacts

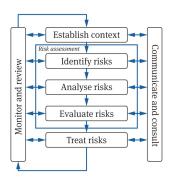

<u>Identify Future Climate Risks and</u> Opportunities


- Make a list of your exposed assets/services
- List all the weather and climaterelated events that could disrupt or damage those assets/services


Assets/Services	Hazards
Summer Tourism Season Revenue	Warmer temps likely means longer operating season (opportunity)
Staff Safety	Extreme Heat events
Warehouse Building	Site Drainage – extreme rainfall, Snowloads, extreme snowfall
Supply Chain/Winter Road Network	Warmer temps and shorter winter season leads to shorter, less reliable winter road season.

Overview of the 3 Tiers of **CCRA Identify Impacts and** Community **Preliminary Qualitative Risk** Assessment Semi-quantitative Risk Analysis **Systematic Mapping (cross** System sector risks) **Policy Risk Analysis** (includes gap analysis) **Fully Quantitative Risk Analysis** -Data insufficiency Networked significant barrier to T3 -Very few sectors have req'd data to complete T3

46


46

DILLON

Introduction to Tier 1 CCRAs

- Tier 1 Primary Elements:
 - Defining what's in, what's out, geographic boundary conditions
 - Identifying existing stressors potentially exacerbated by climate change
 - Projecting climate-related effects, including changes in climate variability and determining how these effects impact infrastructure
 - Identifying and evaluating the likelihood and consequence of climaterelated impacts
 - Characterizing uncertainty and assumptions
 - · Communicating risks to stakeholders

Source: ISO 31000: Risk Management Guidance

47

47

Tier 1 Example: ISO 31 000

DILLON

- Can be data-driven, qualitative, or both.
- Infrastructure Canada's Climate Lens Requirements, reference to ISO 31000 for Resilience Assessments

48

Tier 1: Consequence Evaluation

- Consequence Evaluation:
 - Can look at Impact Severity in one or more areas:
 - Health & Safety
 - Reputational
 - Operational
 - Environment
 - Financial
 - Legal
 - Community and other stakeholders
- Single Fatality or Permanent Disability Implying Long-Term or Quasi-Permanent To Substitution of Quasi-Permanent Consideration of Quasi-Permanent Absence of Chronic Health Issues. Absent one months.

 Generated Absence for Several months.

 Jost Time Injury and Short/Medium Term Health Effects. Absence of a week or more.

 Medical Treatment Fedeuris Chort-Term Acute Health Effects. Short-Term Absenteeism of Local Treatment with Short recovery and Minor Short-Term Effects, No Absenteeism.

Clients Move to Another Business

Clients Consider Using Another Business for Using Another Business for Using Another Business (SIGNIFICANT Disruptions, Delays or Lossee

Clients Suffer Disruptions, Delays or Losses

Clients Suffer Disruptions, Delays or Losses

Health & Safety

Reputational

49

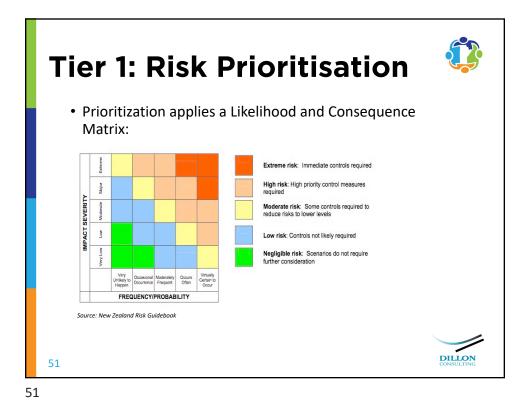
49

Tier 1: Probability/Likelihood

Evaluation

- Probability/ Likelihood Evaluation:
 - Numerical scale, covering range between low and almost certain likelihood of occurrence.

LIKELIHOOD RATI	INGS	
Almost certain	5	Recurrent events - expect this event almost annually. Single event highly likely (>90% probability).
Probable	4	Recurrent events - expect this event several times in your career. Single event - more likely to occur than not (50-90% probability).
Possible	3	Recurrent events - expect this event to occur once in your career, a any time. Single event - less likely than not, but still appreciable chance of occurring (10-50%).
Unlikely	2	Recurrent events - event hasn't occurred during your career yet, bu could occur at some time. Single event - unlikely but not negligible (1-10%).
Rare	1	Recurrent events - event has occurred elsewhere, but in exceptional circumstances. Single event - not expected to occur, but possible (<1%).


Source: World Bank Group, International Finance Corp. Climate Risk and Business-PORTS

1	2	3	4	5
UNLIKELY Not expected to occur	REMOTE Not expected	OCCASIONAL May occur intermittently	CERTAIN Expected to occur eventfully	FREQUENT Likely to occur soon and often

PROBABILITY/LIKELIHOOD

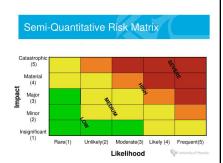
50

Tier 1: More Training

- For more detailed training on Tier 1 CCRAs, please proceed to the CCRA for MB Northern Business Course Module.
- This module will demonstrate a Tier 1 CCRA applied to a business example.

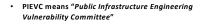
mcrtproject.ca/courses/

52


52

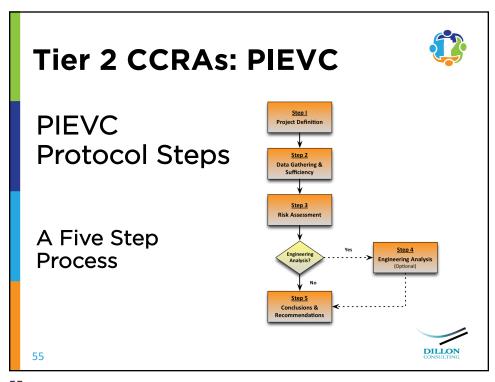
Tier 2 CC Risk Assessment

- · Tier 2 Characteristics
 - Semi-quantitative Risk Analysis
 - Systematic Mapping (indirect and cross-sector risks)
 - Policy Risk Assessment (gap analysis)
 - Best conducted by a multidisciplinary team (climate scientists, engineers, process operators, maintenance staff)
- Tier 1 assessment process informs selection of higher priority impact areas or assets for Tier 2 Analysis
- Many approaches to T2 analyses


53

53

Tier 2: PIEVC Risk Framework


- Developed and launched by Engineers Canada
- In 2020, Engineers Canada transferred ownership and control of PIEVC to the Institute for Catastrophic Loss Reduction (ICLR), the Climate Risk Institute and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
- An assessment protocol to assess and prioritize climate vulnerabilities for critical public infrastructure
- Objectives:
 - look at infrastructure vulnerability to climate change from an engineering perspective
 - Facilitate development of best engineering practices that adapt to climate change impacts

M. Extrem	atrix		Pro	bability		
	lisk	1 Very Low	2 Low	3 Moderate	4 High	5 Very High
	1 Very Low	1	2	3	4	5
0,	2 Low	2	4	6	8	10
Severity	3 Moderate	3	6	9	12	15
ţ.	4 High	4	8	12	16	20
	Very High					

DILLON

54

Tier 2: Considerations for Risk in PIEVC

- Specifically, PIEVC looks at the aspects of a facility with anticipated sensitivities to changes in specific climate parameters. PIEVC guides to look for problems in areas of:
 - Structural Serviceability
 - Serviceability
 - Operations & Maintenance
 - Emergency Response Risks
 - Insurance Considerations
 - Policies and Procedures
 - Economics
 - Public Health & Safety
 - Environmental Effects

Structural Design
Functionality
Watershed, Surface Water,
Groundwater
Groundwater
Cheerations & Maintenance
Emergency Response Risks
Insurance Considerations
Policies and Procedures
Social Effects

i.e. "When extreme rain event occurs, what response is possible in these key performance areas?"

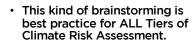
56

Tier 2: Identifying Climate 🚯 Interactions in PIEVC

																C	limat	te Pa	ram	eter	s			
		Temperature											Rainfall											
Infastructure Components	(D	Th ec/J	vinte aw an/F >=30	eb	(Cy Wint	e-Tha cles er, 3 -3C	0	(1. ne	enet 51m ed to	ost ratio dep rev hold	th; isit	(thres causin	hold f g road Sin por	Rain or pon closu iding; in 1hr	ding re, 4-	(Thres 55mn year	reme shold t n in 1 event currer	or flor hour; '	oding; ~1:14 d on	(Cat 1: 79.5	astrop 100 ye imm in	Rain hic eve ar eve 1hr bo	ents; nt; ased
Catchment Ground Surfaces	Y/N	Р	S	R	Y/N	Р	S	R	Y/N	Р	S	R	Y/N	Р	S	R	Y/N	Р	S	R	Y/N	Р	S	R
Roads	n			0	n			0	n			0	У	4	3	12	Υ	2	4	8	Υ	1	5	5
Grass	n			0	n			0	n			0	у	4	2	8	Υ	2	3	6	Υ	1	4	4
Parking Lots	n			0	n			0	n			0	у	4	3	12	Υ	2	4	8	Υ	1	5	5
Rooftops -residential	n			0	n			0	n			0	у	4	1	4	Υ	2	1	2	Υ	1	1	1
Weeping Tile	n			0	n			0	n			0	v	4	1	4	v	2	1	2	v	1	3	3

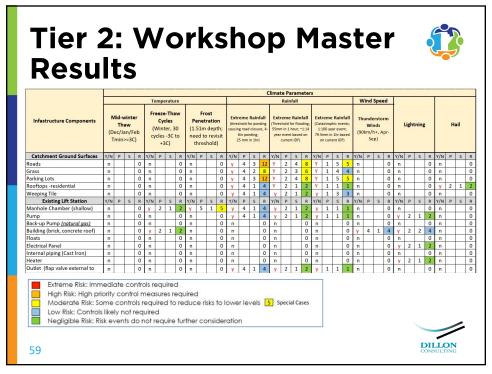
Severity	3 Moderate 2	3	6	9	12	15
	1 Very Low	1	2	3	4	5
	Risk	1 Very Low	2 Low	3 Moderate	4 High	5 Very High
M	atrix		Pr	obability		

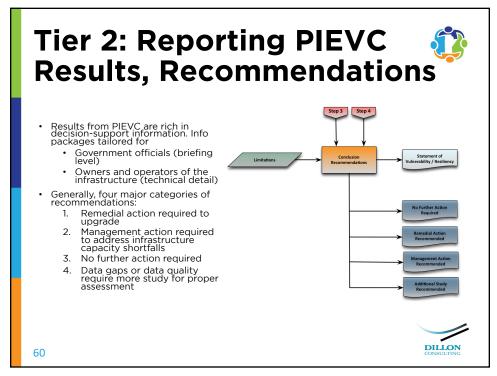
- · For each infrastructure component, PIEVC assessors look at each climate factor and ask:
 - Will a component react in some way to a change involving this climate parameter?
 - If a climate impact is anticipated, a "YES" or a "checkmark" is indicated identifying this interaction.


57

57

Tier 2: Verifying Results in 🐴 **Workshop Session**


- Verify Results in Workshop. Allows confirmation of:
 - · Protocol data and workflow
 - · Climate data availability, suitability and applicability
 - Vulnerability assessment rationale, results and verification with system operators and managers



Leverages multiple perspectives on climate impacts across your business.

58

Tier 2: More Training on PIEVC

 For more detailed training on Tier 2 CCRAs, please proceed to the MCRT Course:

Infrastructure Climate Risk Assessment Featuring the PIEVC Process

 This module will provide detailed training on conducting a PIEVC assessment, tailored for the design community.

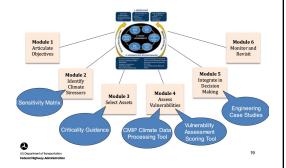
mcrtproject.ca/courses/

61

61

Introduction to Tier 3 CCRAs

- Highest detail and effort to complete.
- Conducted on a critical network scale (e.g. state highway network)
- Multiple detailed steps to complete
- Example: FHWA Maryland State Highway Administration Climate Vulnerability Assessment


DILLON

62

Introduction to Tier 3 CCRAs

- Involved detailed modelling of multiple climate stressors
 - Sea Level Rise
 - Storm Surge
 - Precipitation
- This study assessed:
 - over 220 bridge assets
 - State road networkState culverts and drainage conveyances
- Study took 2 years to complete, included teams of MDOT staff, consulting engineers, local university climate experts.
- Tier 3 is not commonly used due to complexity and cost. Suitable for holders of large asset portfolios.

DILLON

63

63

Where to From Here?

- For Business Sector participants, proceed to the
 - CCRA for Manitoba Business Module.
 - Tier 1 CCRA applied to the business context.
- For design professionals, proceed to the
 - Infrastructure Climate Risk Assessment Featuring the PIEVC Process Module

mcrtproject.ca/courses/

64

Feedback

Post Class Participation Survey:

- Your feedback is extremely important to us, critical to understanding how you might use new capacities to expand the resilience of your business against climate change impacts.
- Links to a survey will be emailed to you within 24 hours

DILLON

ы

