INFRASTRUCTURE CLIMATE RISK ASSESSMENT -FEATURING THE PIEVC PROCESS

Jeff O'Driscoll, P.Eng. IRP Division Manager, Infrastructure Associated Engineering

MANITOBA CLIMATE RESILIENCE TRAINING

Supported by Natural Resources Canada's Building Regional Adaptation Capacity and Expertise (BRACE) Program

Interaction

- The course is being recorded (your participation confirms your agreement)
- Cameras and Microphones are off
- Polls to receive your feedback
- Chat is open
 - During Presentation and Q&A
 - Comments are welcome and will be monitored
 - Please send comments to **Everyone** not the presenter
- Technical issues, chat issue to EngGeoMB
- Follow-up with survey and details of the presentation

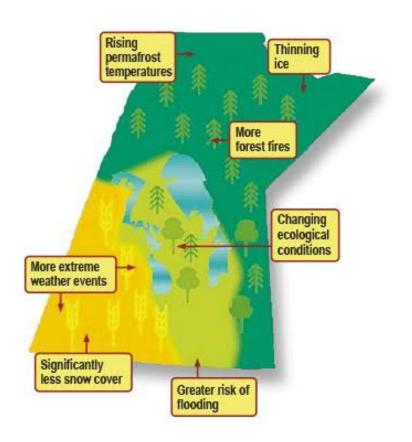
Course

- Overview and Highlights of Previous Courses
- Climate Change Resilience Assessment
- Example Project
- Defining the Scope of an Assessment
- Defining Climate Data
- Assessing Risk
- Evaluating and Treating Risk
- Question and Answer Session

Overview

- Course will walk you through a climate change risk assessment (CCRA), using the PIEVC process
- Demonstrate how climate data is obtained and used in assessing and managing risk, informing design parameters/criteria and communicating climate impacts.

INFRASTRUCTURE CLIMATE RISK ASSESSMENT -FEATURING THE PIEVC PROCESS


Designing or building infrastructure to last? Using Manitoba-themed example projects and case studies, this course will provide PIEVC tools to conduct climate risk assessment on infrastructure systems.

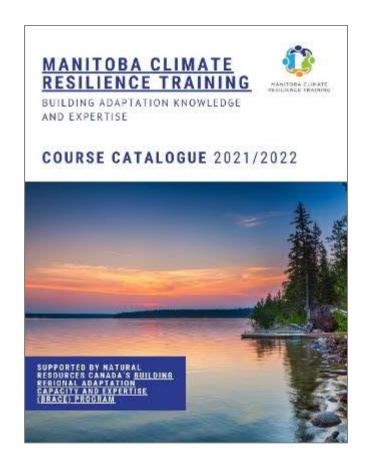
- Prerequisites: Climate 101, Manitoba's Changing Climate, Climate Risk Assessment Core Principles
- Recommended prerequisite: Climate Change 101
- Week of January 24, 2022
- 90min
- Virtual
- Presented by Engineers Geoscientists Manitoba

Overview

Manitoba's Climate is Changing

- Warmer and wetter winters
- Longer, warmer and drier summers.
- Greater variability in precipitation
- Greater frequency and intensity of
 - Heat waves and cold snaps
 - Droughts and floods
 - Intense storms

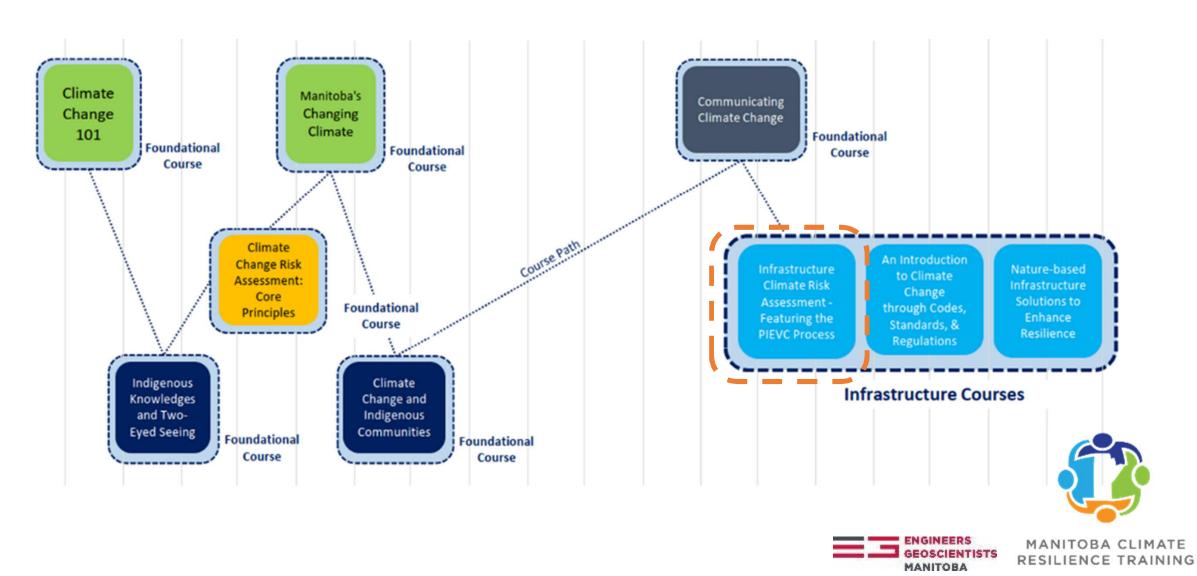
Overview



Impacts

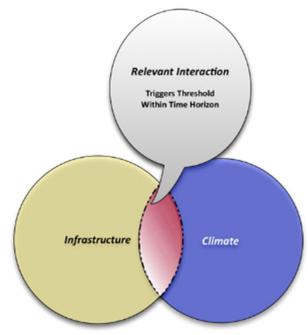
- Flood and drought risks will be higher
- Warmer winters will degrade ice roads making it harder to transport supplies to communities.
- Extreme weather events will impact insurance costs and government spending on disaster relief.

Highlights of Previous Courses



Highlights of Previous Courses

Poll



Climate Change Risk Assessment

PIEVC Process

 Systematic process to assess historic climate and project the nature, consequence and likelihood of future climate changes and events on infrastructure to inform on infrastructure planning, design, operation and management.

Public Infrastructure Engineering
 Vulnerability Committee (Engineers Canada)

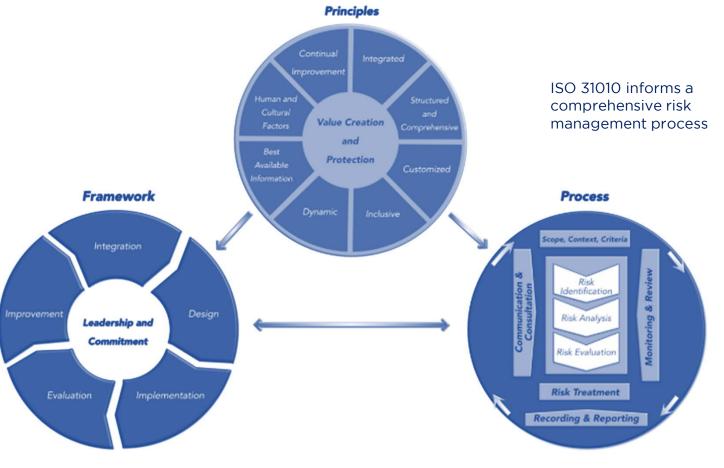
Climate Change Risk Assessment

- PIEVC Program (pievc.ca)
 - Ownership and control of the PIEVC Program through a partnership consisting of the Institute for Catastrophic Loss Reduction (ICLR), the Climate Risk Institute (CRI) and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.

- PIEVC Protocol
- PIEVC High Level Screening Guide
- PIEVC Large Portfolio Assessment Manual
- Infrastructure Resilience Professional(IRP) Training

Why Assess Risk?

- To deal with uncertainties of future climate
- To deal with risks to physical infrastructure and infrastructure service and disruptions
- To protect people, property and environment
- To consider legal, financial and lifecycle and management
- To prioritize actions to adapt to increasing challenges and impacts
- To change the way we design, build and manage infrastructure
- To be more sustainable and more resilient



When to Assess Risk?

- Full lifecycle
 - Planning
 - Design
 - Operation
 - Upgrade

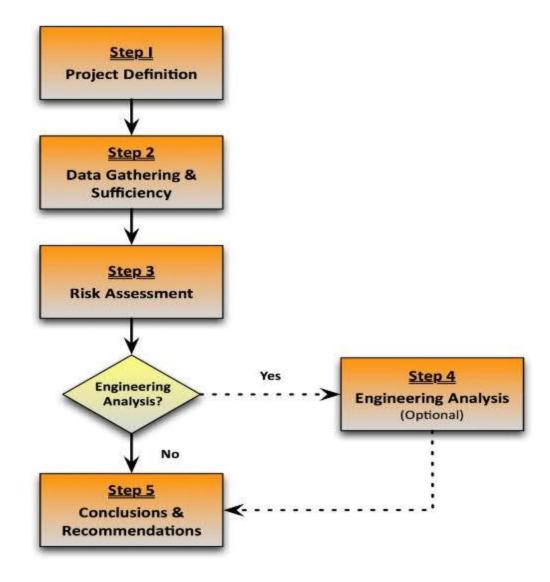
When to Assess Risk?

- Full lifecycle
 - Planning
 - Design
 - Operation
 - Upgrade

	Expected Lifecycle
Dams/ Water Supply	Base system 50-100 yrs Refurbishment 20-30 yrs Reconstruction 50 yrs
Storm/Sanitary Sewer	Base system 100 yrs Major upgrade 50 yrs Components 25 - 50 yrs
Roads & Bridges	Road surface 10 - 20 yrs Bridges 50 - 100 yrs Maintenance annually Resurface concrete 20-25 yrs Reconstruction 50-100 yrs
Houses/ Buildings	Retrofit/alterations 15-20 yrs Demolition 50-100 yrs

PIEVC Applications

- Infrastructure Canada's Climate Lens
- Provincial and municipal climate lens assessment requirements.
- Assessments to support applications of the First Nations Infrastructure Resiliency Toolkit.
- Asset management, capital and master planning.
- Infrastructure operations and management evaluation and review.
- Asset portfolio assessment and evaluation.


PIEVC Applications

- Concept and preliminary engineering design.
- Green and natural infrastructure assessments.
- Preliminary reporting on climate risk as part of Carbon Disclosure Project or other financial requirements.
- Informing **Emergency Management** and Business Continuity Management practices.
- Applications requiring standard risk assessment methodologies compliant with ISO 31000 and ISO 14090.

PIEVC Process

 Highway 10 near the Town of Minnedosa

> Note: This is not an actual assessment. The example project and location is used solely to demonstrate the process

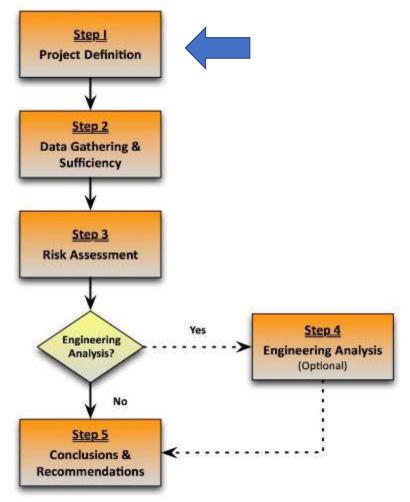
 Highway 10 near the Town of Minnedosa

 Highway 10 near the Town of Minnedosa Google Maps MB-10
Highway 10

Imagery ©2021 CNES / Airbus, Maxar Technologies, Map data ©2021

Example Project Resources

- Team Resources may include:
 - Risk assessment specialist(s)
 - Climate specialist(s)
 - Planners / Technical / Professional Engineer(s)
 - Natural Environment Subject Matter Expert
 - Operation & Maintenance
 - Management, Finance, Legal
 - Non-organizational stakeholders
 - Indigenous



Defining the Scope

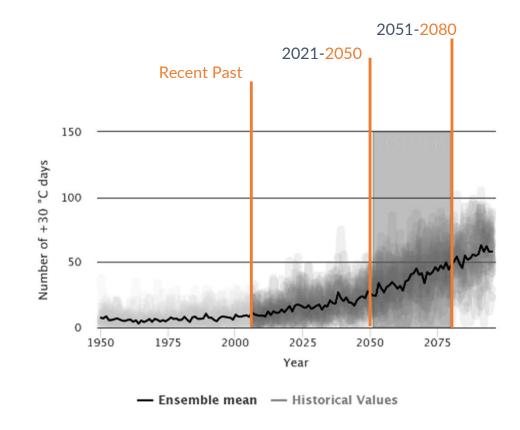
- Establish
 - Infrastructure
 - Climate
 - Time Horizon
 - Geographical Setting
 - Applicable Jurisdictions

Defining the Scope - Infrastructure

Defining the Scope - Climate

Temperature	Mean values Extremes
Precipitation as Rain	Frequency and Intensity Annual/seasonal precipitation and rain Drought conditions
Precipitation as Snow	Annual/seasonal precipitation and snow Magnitude of snow events Rain on snow events
Hail	Frequency of events Magnitude of events
Ice Accretion	Ice storm events Ice buildup on infrastructure
Flooding	River / Lake Flooding Flooding (precipitation)
Fog	Frequency Visibility
Ice	River or lake ice
Frost	Freeze thaw cycles Change in frost season
Wind Speed	Extreme gusts / Thunderstorm winds Tornado event frequency/intensity
Fire	Wildfire / Smoke
Lightning	Lightning

Defining the Scope - Climate

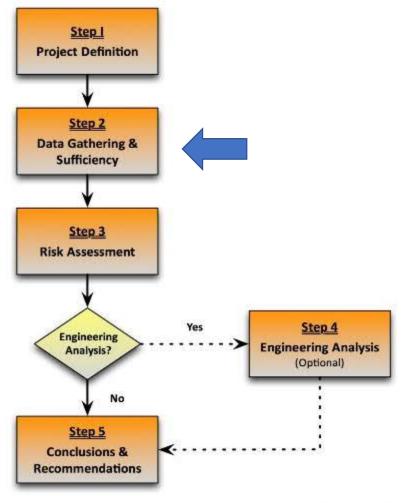

Temperature	Mean values Extremes
Precipitation as Rain	Frequency and Intensity Annual/seasonal precipitation and rain Drought conditions
Precipitation as Snow	Annual/seasonal precipitation and snow Magnitude of snow events Rain on snow events
Hail	Frequency of events Magnitude of events
Ice Accretion	Ice storm events Ice buildup on infrastructure
Flooding	River / Lake Flooding Flooding (precipitation)
Fog	Frequency Visibility
Ice	River or lake ice
Frost	Freeze thaw cycles Change in frost season
Wind Speed	Extreme gusts / Thunderstorm winds Tornado event frequency/intensity
Fire	Wildfire / Smoke
Lightning	Lightning

Defining the Scope - Time Horizon

Expected Lifecycle
Base system 50-100 yrs Refurbishment 20-30 yrs Reconstruction 50 yrs
Base system 100 yrs Major upgrade 50 yrs Components 25 - 50 yrs
Road surface 10 - 20 yrs Bridges 50 - 100 yrs Maintenance annually Resurface concrete 20-25 yrs Reconstruction 50-100 yrs
Retrofit/alterations 15-20 yrs Demolition 50-100 yrs

Defining the Scope - Geographical Setting and Jurisdictions

- Provincial
- Municipal
- Private



- Collect data on:
 - Baseline Climate (Recent Past)
 - Climate Change (2050, 2080)
 - Time Horizon
 - Establish level of precision
 - Level of assessment ⇒
 Level of detail

- Climate Resources
 - Climate West (climatewest.ca)
 - ClimateData.ca
 - Climate Atlas of Canada (climateatlas.ca)
 - PARC Data Applications (www.parc.ca)
 - Flood Mapping, Flood Studies, Modeling
 - Refined data sets and technical documents prepared by municipalities

- Climate Atlas of Canada
 - Minnedosa

Climate Atlas Report Municipality: Minnedosa

		1976-2005		2021-2050		2051-2060			
Variable	Period	Mean	LOW	Hean	High	LOW	Mean	High	
magazar (maj	*****	107	2/4	611	840	275	1/12	900	
rengdelen (ren)	101110	997	60	111	157	er	128	199	
Precipitation (max)	110000	200	121	211	313	110	201	300	
Procipitation (man)	tet	190	52	108	178	95	108	173	
Precipitation (nam)	winter	ee	45	73	100	46	79	110	
Vean Temperature (°C)	81748	5.4	1	3.7	5.5	4	6.2	0.3	
Vasn Temperature (°C)	spring	5.3	1.2	1.5	6.7	2.4	5.6		
Van Temperature (*C)	turner	18.7	17	10.9	28.4	10.7	21.2	23.5	
Vean Temperature (°C)	nd	3	1	5.2	7.0	5.3	1,5	9.9	
Vean Temperature (15)	Wilter	-15.8	46.6	-58	.0.3	.14	-10	-6.0	
Frankal Nights	STEER			1				50	
Very fiel elega (+50°C)	arred	7		77	38	14	18	62	
Very mind days (-80°G)	31113	18	1		19		8		
Date of Leat Spring Frest	annad	Way 21	April 27	May 13	May 30	April 13	May 4	Way 21	
Date of First Pell Prost	21742	Sep. 18	Sep. 9	Sep. 28	Oct. 18	Sep. 20	Oct. 5	06.28	
Ferry Fran Farmen Ideas	20000	414	465	400	500	457	484	244	

		1976-2005		2021-2050			2051-2160	
Variable	Period	Mean	LOW	Mean	High	LOW	Mean	High
Promptation (ren)	20152	451	278	508	891	283	508	455
Prospitation (men)	sering	107	90	118	189	102	119	189
Precipitation (ren)	311118	205	124	208	108	118	204	308
Precipitation (mm)	tell	190	54	107	174	53	108	172
Precipitation (mm)	virter	66	44	74	111	44	76	113
Vean Temperature (°C)	MOTAN	3.4	1.0	3,5	5.3	2.6	4,7	6.7
Vaun Temperature (°C)	apring	1.3	8.3	3,4	6.5	15	4.5	7.7
Vees Temperature (*C)	surreer	162	16.7	19.5	38.3	17.5	19.5	31.7
Veen Temperature (°C)	ret	. 1	2.0	5	7.1	2.6	6	0.2
Maan Temperature ("E)	Section	115.8	dia	1500	467	-15-Ji	151.44	17.8
Tropical Sayon	*****	- 0			4		x	
Many had alogo (HAR TO)	enne		F	37	22	9.	26	dh
Very cold days (-30°C)	21148	18	1	9	21			14
Date of Last Spring Free!	******	Way 21	April 28	May 15	June 2	April 25	May 11	Way 25
Dels of First Fell Front	91146	Sep. 18	Sep. 8	Sep. 25	Oct. 14	Sep. 12	Sep. 30	Det. 19
Front-Free Season (days)	arrasi	116	105	131	195	491	138	165

Climate Atlas Report

Municipality: Minnedosa

GHG emissions continue to increase at current rates

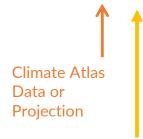
		1976-2005		2021-2050		2051-2080				
Variable	Period	Mean	Low	Mean	High	Low	Mean	High		
Precipitation (mm)	annual	480	376	511	656	375	513	665		
Precipitation (mm)	spring	107	60	119	187	67	126	199		
Precipitation (mm)	summer	208	121	211	313	110	201	308		
Precipitation (mm)	fall	100	52	109	178	55	108	173		
Precipitation (mm)	winter	00	43	13	109	46	18	118		
Mean Temperature (°C)	annual	1.4	2	3.7	5.5	4	6.2	8.3		
Mean Temperature ("C)	spring	1.5	0.2	1.5	6.7	2.4	0.0	9		
Mean Temperature ("C)	summer	16.7	17	18.9	20.8	18.7	21.2	23.5		
Mean Temperature ("C)	fall	3	3	5.2	7.3	5.3	7.5	9.8		
Mean Temperature (°C)	winter	-15.8	-16.9	-13	-9.3	-14	-10	-5.9		
Fropical Nights	annual	0	0	1	5	0	8	20		
Very hot days (+30°C)	annual	7	5	19	36	14	38	62		
Very cold days (-30°C)	annual	18	1	8	19	0	3	8		
Date of Last Spring Frost	annual	May 21	April 27	May 13	May 30	April 13	May 4	May 21		
Date of First Fall Frost	annual	Sep. 18	Sep. 9	Sep. 28	Oct. 18	Sep. 20	Oct. 9	Oct. 28		
Frost-Free Season (days)	annual	116	109	135	160	127	154	184		

Assigning Likelihood Scores

RCP 8.5: High Carbon climate future

		1976-2005		2021-2050		2051-2080				
Variable	Period	Mean	Low	Mean	High	Low	Mean	High		
Precipitation (mm)	annual	480	376	511	656	375	513	665		
Precipitation (mm)	spring	107	60	119	187	67	126	199		
Precipitation (mm)	summer	208	121	211	313	110	201	308		
Precipitation (mm)	fall	100	52	109	178	55	108	173		
Precipitation (mm)	winter	00	43	13	109	46	13	118		
Mean Temperature (°C)	annual	1.4) 2 (3.7	5.5	4. (6.2	8.3		
Mean Temperature (°C)	spring		0.2		6.7	2.4		9		
Mean Temperature (°C)	summer	16.7	17	18.9	20.8	18.7	21.2	23.5		

	Mea	Annual Mean Temperature (deg C)									
Present	1.4	3									
2050	3.7	4) 🕕								
2080	6.2	5									


Score		Likelihood	
	Method A	Method B	Method C
0	Negligible Not Applicable	<1 in 1,000	
1	Highly Unlikely Improbable	1 in 100	Likely to occur less frequently than current climate
2	Remotely Possible	1 in 20	
3	Possible Occasional	1 in 10	Likely to occur as frequently as current climate
4	Somewhat Likely Normal	1 in 5	
5	Likely Frequent	>1 in 2.5	Likely to occur more frequently than current climate

Assigning Likelihood Scores

		Temperature																
	Annual Summer		Winter		Extreme		Extreme		Freeze Thaw		Thaw							
	Mea		nperature g C)	Mear		nperature g C)	Mear	lean Temperature (deg C)		Very Hot Days (+30 deg C)		Very Cold Days (-30 deg C)		Freeze Thaw Cycles				
Present	1.4	3		16.7	3		-15.8	3		7	3		18	3		72.6	3	
2050	3.7	4		18.9	4		-13	2		19	4		8	2		66.5	2	
2080	6.2	5		21.2	5	·	-10	2		38	5		3	1		64.1	2	

Assigned Likelihood Score

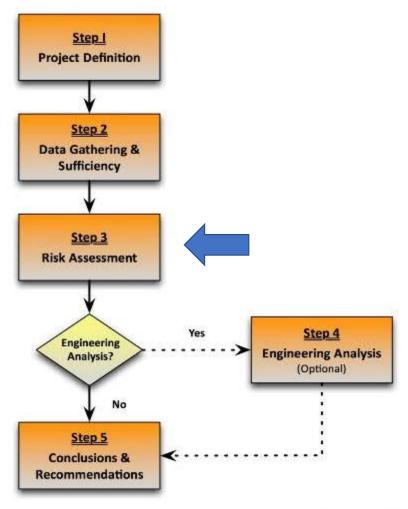
Assigning Likelihood Scores

		Precipitation																
	Annual			Intensity		Intensity		Drought Conditions		Winter Precipitation			Ice Storms					
	Annual Precipitation (mm)		Five Day Max Precipitation (mm)		Heavy Precipitation Days (20 mm)		Dry Days		Snow (mm)		Ice Storms							
Present	480	3		56	3		3	3		245.6	3		66	3			3	
2050	511	4		61	3		3.5	4		244.7	3		73	4		+	4	
2080	513	4		61	3		3.4	4		245.8	3		79	4		+	5	

Assigned Likelihood Score

Assigning Likelihood Scores

		Extreme Events												
	Ext	reme	e Winds	Lightning			Flood			Wildfire / Smoke				
	Tornado				Ligh	tning	Flood Risk Report / Ice Jams			Fire				
Present		3			3			3			3			
2050	+	4		+	4		+	4		+	4			
2080	+	5		+	5		+	5		+	5			



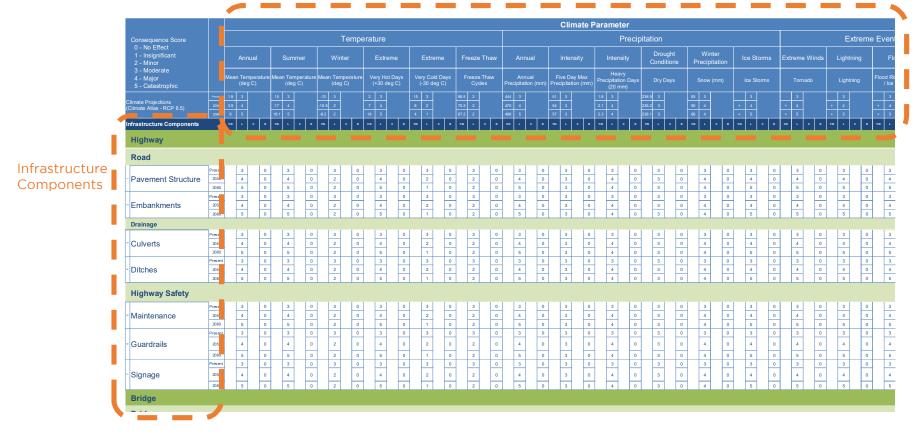
Assigned Likelihood Score

- Important considerations:
 - Risk tolerance
 - Are climate interactions possible?
 - Cumulative or combination events
 - Likelihood scoring
 - Consequence scoring
 - Judgments on uncertainties

RESILIENCE TRAINING

 Risk (R) is defined as the product of the Likelihood (L) of an event and the Consequence (C) of that event – should it occur.

5		Catastrophic	0	5	10	15	20	25					
4		Major	0	4	8	12	16	20					
3	CONSEQUENCE	Moderate	0	3	6	9	12	15					
2	QUENCE	Minor	0	2	4	6	8	10					
1		Insignificant	0	1	2	3	4	5					
0		No Effect	0	0	0	0	0	0					
			Negligible Not Applicable	Highly Unlikely Improbable	Remotely Possible	Possible Occasional	Somewhat Likely Normal	Likely Frequent					
			LIKELIHOOD										
			0	1	2	3	4	5					


• $R = L X C^*$

Risk Assessment Worksheet

Climate Parameters

- Risk Assessment (Workshop)
 - Working as a Group
 - Review infrastructure components and climate data
 - Evaluate if each infrastructure component will interact with/exposed to a given climate parameter (Y / N)

- Evaluate the consequence of the climate interaction. Assign a Consequence Score (C)
- Review risk assessment results and discuss how the risks could be addressed

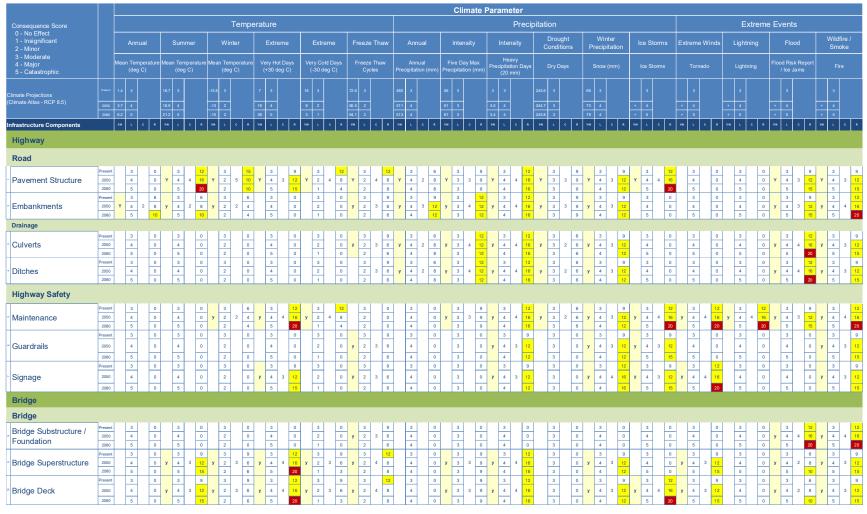
- Risk Assessment (Workshop)
 - Evaluate if a given infrastructure component will interact with a given climate parameter (Yes / No)
 - Evaluate the consequence of the climate interaction. Assign a Consequence Score (C)

Score	Consequence					
	Method D					
0	No Effect					
1	Insignificant					
2	Minor					
3	Moderate					
4	Major					
5	Catastrophic					

- Review

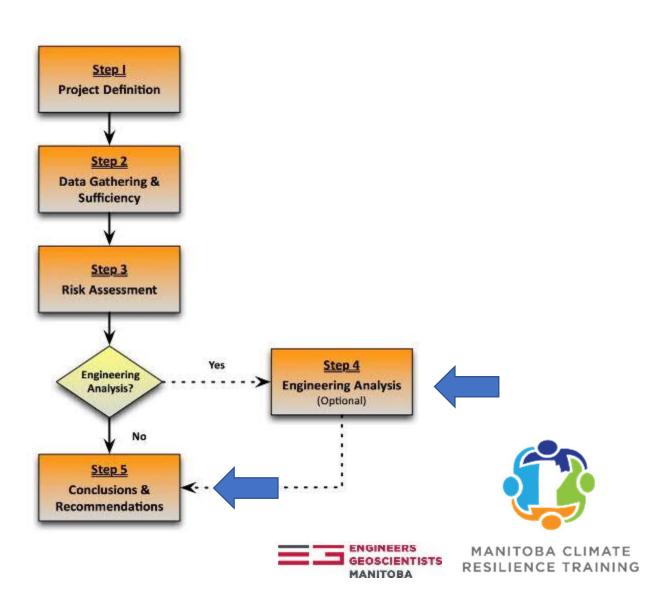
 Likelihood (L)
 value
 provided.
- Review Risk
 Scores (R) for
 each item

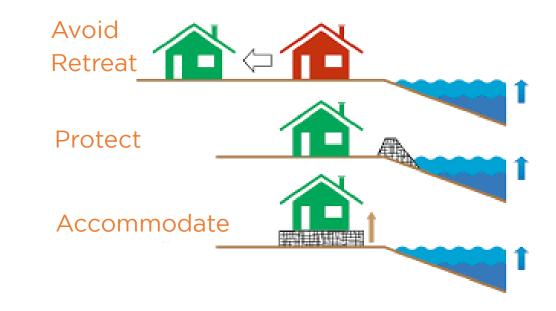
Risk = Likelihood x
Consequence


Low Risk

Medium Risk

High Risk

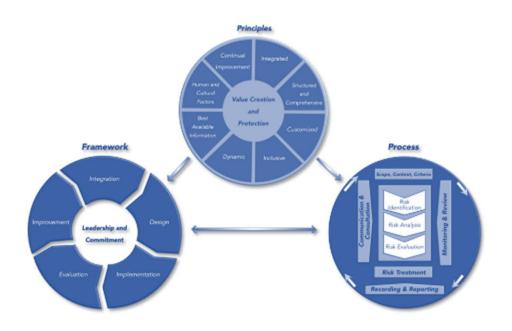




- Engineering Analysis
 - Optional
- Evaluate Risk:
 - Summaries / Prioritize
 Risks (Low/ Medium High)
 - Review rational for consequent scoping
 - Begin to develop treatment options

- Recommendations:
 - Risk mitigation / adaptation actions
 - Avoid / Retreat / Protect / Accommodate
 - Natural Infrastructure
 - CC Based Codes Standards
 - No further action
 - Remedial action
 - Management action
 - Additional Study

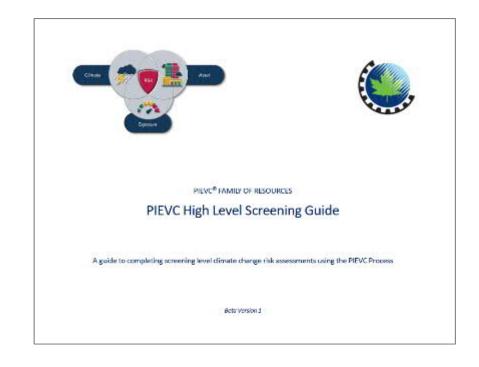
Example Project

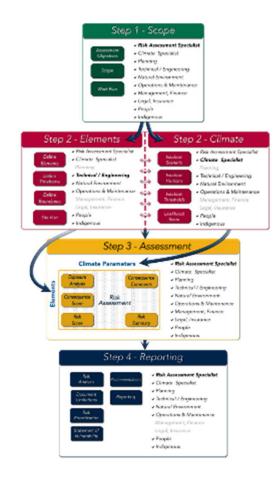


Next Steps:

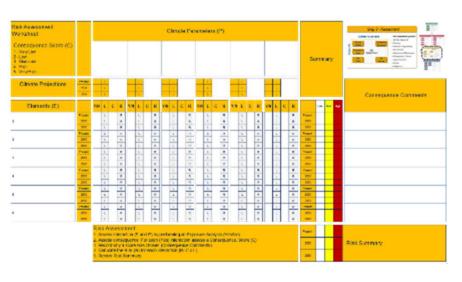
- Further risk assessment on high and medium risk
- Inform concept or planning phases of infrastructure on areas to adapt
- Use the climate data and risks to inform design
- Inform operation and maintenance activities
- Inform infrastructure upgrades on areas to adapt
- Inform adaptation plans

- Communication
 - Reporting / Presentations / Workshops / Stakeholder Engagement
 - Decision Making (Context)
 - Financial case study
 - Cost benefit analysis
 - Triple Bottom Line analysis
 - Opportunities to integrate sustainable infrastructure


Poll



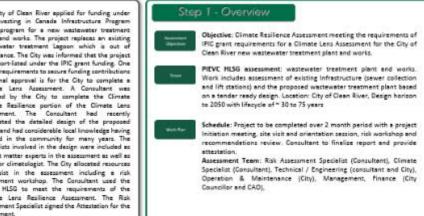
PIEVC High Level Screening Guide



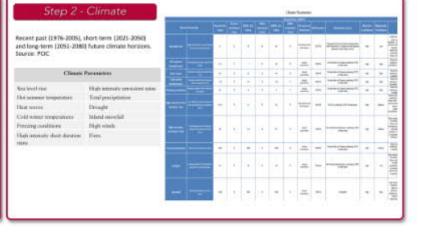
PIEVC High Level Screening Guide

Asset	Elements	Sub Elements	Parameters	Hazards for Consideration	
Water Supply System	Water Supply Intake	Intake structure			
-		Raw Water Pump Stations	T	Extreme Heat Extreme Cold	
	Water Treatment Plant Building -	Envelope	Temperature	Heat Wave Cold Snap	
	Structural	Roofing			
		Foundation		Long Duration Rain	
	Water Treatment Plant Building -	Boilers/Heating Systems	Precipitation	Short Duration High Intensity Rain Drought	
	Mechanical	Chillers/Cooling Systems			
		HVAC controls and automation systems	Winds	Wind Gusts	
		Air handling/ ventilation systems		Tornadoes Coastal Parameters (e., sea level rise, i near salt wate source)	
	Water Treatment Plant Building - Electrical	Fire alarm and protection	Other		
		Lighting systems			
		Building controls and automation systems			
		Emergency backup power			
		Communication Systems			
	Water Treatment Plant Building - Treatment Infrastructure	Process equipment			
	Water Treatment Plant Building -	Stormwater drainage system			
	Site Services	Power supply and distribution			
	Storage and	Storage tank/ reservoir			
	Distribution	Pump stations			
		Feeder mains			
	Other	Personnel (O&M staff)			
		Site access - Parking, access lanes, etc.			
		Lighting Pole, Signage			

Climate Parameter (P)	Climata Hazard (H)	Indicator ()	Present (1591-2013) Extrasted Value	Boseine Likelihood Score (L)	20509 (2541-2970) Estimated Value	2800s Likelihood Score (L)	2089s (2971-2100) Estimated Value	2083s Likelhood Score (L)	Produktity Score Methodology	Occurrence Defeator	Climata Scenario	Parameter Source	Direction / Hagnitude Confidence
2	Extreme Host	Days with Texas > 35°C	9.2	3	1.6	4	65	5	Mode Busiline	Days per year	RCP 8.5	Climate Data ca Observed Data and Projections	IncreasingHigh
riberativ	Extreme Cold	Days with Year < -30°C	23	3	0.5	2	0.1	9.	Mode Bosolne	Days per year	RCP 85	Gimate Data ca Observed Data and Projections	Decreasing High
ř.	Froste Thow Cycles	Annual Frequency	56.8	3	49.9	3	43	9	Middle Baseline	Cycles per year	RCP 85	Climate Data ca Observed Data and Projections	Decreosing/High
s	Annual Precipitation	Average Annual Precip	410	3	450	3	550	.4.	Middle Baseline	Total Procop (mm)	RCP 8.5	Climate Data ca Observed Data and Projections	IncreasingNoderate
sciplant	Extreme Rainfall	Occurrence of Street rainfell in 24 hours	0.02	3	0.04	ě	0.05	4	Middle Baseline	Frequency per year	RCPAS	Climate Data ca Observed Data and Projections	Increasing Low to- Moderate
F.	Evought	Langth of Dry Spells	5.2	3	8.0	ě	10.2	5	Middle Baseline	Consessitive days per year	RCPAS	Climate Data ca Observed Data and Projections; Additional Calculations	IncreasingNoderate
Wind	Wind Outlo	Frequency of Mind Quals = 90 lenster	23	3	Likely increasing, up to 50%	3	Liftely increasing, up = 50%	- 4	Middle Basidine	Everguoncy per year	RCP 8.5	Climate Data as Observed Data from Station, Liferature and Research to support prisected changes	Likely increasing Low
*	Torsidoes	Occurrence of EF1 er stronger tomado	0.02	3	0.02	3	9.02	3	Middle Baseine	Frequency per year	RCP 8.5	ECCC Temade Database, Literature and Research to support possible changes	Sloady or Possibly Increasing/Yely Lew




PIEVC High Level Screening Guide


Appendix - Example Projects

The City of Clean River applied for funding under the Investing in Canada Infrastructure Program (ICIP) program for a new westewater treatment plant and works. The project replaces an existing wastewater treatment Lagoon which is out of compliance. The City was informed that the project was short-listed under the IPIC grant funding. One of the requirements to secure funding contributions and final approval is for the City to complete a Climate Lens Assessment. A Consultant was engaged by the City to complete the Climate Change Resilience portion of the Climete Lens Assessment. The Consultant had recently completed the detailed design of the proposed works and had considerable local knowledge having worked in the community for many years. The specialists involved in the design were included as subject matter experts in the assessment as well as e servior climatologist. The City ellocated resources to assist in the assessment including a risk essessment workshop. The Consultant used the PIEVC HLSG to meet the requirements of the Climate Lens Resilience Assessment. The Risk Assessment Specialist signed the Attestation for the

Summary

Next Infrastructure Courses

AN INTRODUCTION TO CLIMATE CHANGE THROUGH CODES, STANDARDS, AND REGULATIONS

We now know that a stable, reliable climate system is no longer something that can be counted on. Learn how codes, standards, and regulations are changing to ensure that our new infrastructure is best prepared for climate changes now and in future.

- Recommended prerequisite: Climate Change 101
- Week of February 7, 2022
- 90min
- Virtual
- · Presented by Engineers Geoscientists Manitoba

NATURE-BASED INFRASTRUCTURE SOLUTIONS TO ENHANCE RESILIENCE

Natural infrastructure is becoming a mainstream option for enhancing the resilience of built infrastructure and communities. This course will provide a basic understanding using sustainable / natural infrastructure / innovative solutions to build resilience to climate change. A diverse range of nature-based solutions, implementation considerations, and their co-benefits will be presented

- Recommended prerequisites: Climate Change 101, Manitoba's Changing Climate, Climate Risk Assessment Core Principles, Climate Risk Assessment using PIEVC, Codes, Standards and Regulations
- Week of February 21, 2022
- 90 min
- Virtual
- Presented by Engineers Geoscientists Manitoba

Questions

