Tools for Municipal Adaptation Planning: ClimateData.ca

March 15, 2022

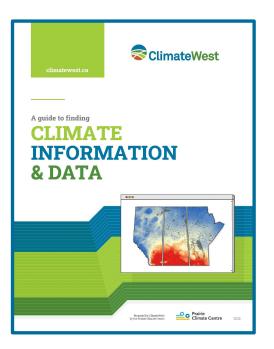
Today's Agenda

- 1. Who is ClimateWest
- 2. The Climate Data Guide
- 3. Speaker Introductions
- 4. Introduction to ClimateData.ca
- 5. Case Study: Associated Engineering
- 6. Q&A
- 7. Closing Remarks

- This webinar is being recorded.
- Have a question during the session? Drop it in the chat box and we'll do our best to address it during the Q&A period.
- An email will be sent out after the webinar with links to the session recording, presentation slides, and helpful resources!

Meet ClimateWest

A network-based, non-profit and regional hub for climate services in Manitoba, Saskatchewan and Alberta.



Our mission is to empower people, communities, businesses and governments to address climate risk through planning and action across the Prairie region.

ClimateWest is comprised of 3 founding partners:

- Prairie Adaptation Research Collaborative (PARC)
- Prairie Climate Centre (PCC)
- International Institute for Sustainable Development (IISD)

The Climate Data Guide

- Overview of credible resources that offer free access to climate data about the future
- Prairie-focused
- Provides the basics for how climate information and data can be used in risk management and adaptation planning
- Includes cheat sheets to help you determine your data needs

Poll

Please go to www.menti.com and use the code: 73 32 17 9

Elaine Barrow

Elaine joined the Canadian Centre for Climate Services as Senior Climate Advisor in 2019. She has since been involved in the development of ClimateData.ca as well as developing and delivering training materials to help decision-makers understand how to use climate information.

Elaine has a PhD in Environmental Sciences and over thirty years of experience in climate change research. She started her career in the Climatic Research Unit, University of East Anglia (UK), moved to Canada in 1999, and has since worked mainly as a consultant undertaking climate change research with a focus on the prairies.

Jeff O'Driscoll P.Eng., IRP

Jeff is a professional engineer and the Infrastructure Division Manager for Associated Engineering's Winnipeg office. He has over 30 years of experience in consulting engineering including current roles as an associate for the Climate Risk Institute and a member of the Engineers and Geoscientist of Manitoba Sustainable Development Task Group.

Jeff graduated from the University of Manitoba and has spent his career in Winnipeg. In recent years, Jeff has become a leader in assessing climate change resilience on infrastructure and has shared this knowledge across Canada and internationally. He holds the designation of Infrastructure Resiliency Professional (IRP).

Platinum member

Tools for Municipal Adaptation Planning Using CliamteData.ca

Jeff O'Driscoll, P.Eng., IRP

March 15, 2022

AE's Core Expertise

Strategic Advisory Services

Transportation

Infrastructure

Environmental

Energy

Buildings

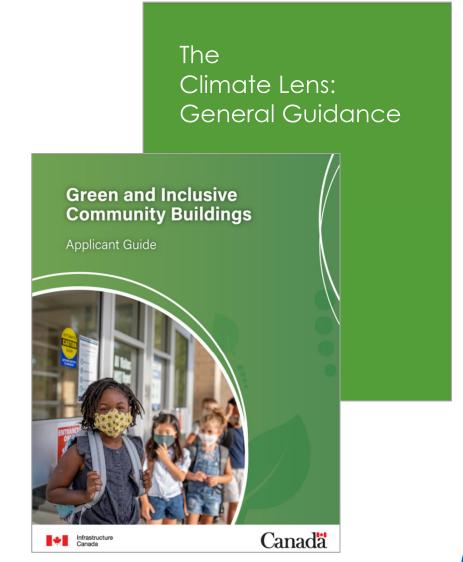
Water

Climate Resiliency

- Building capacity and knowledge
- Climate science and services

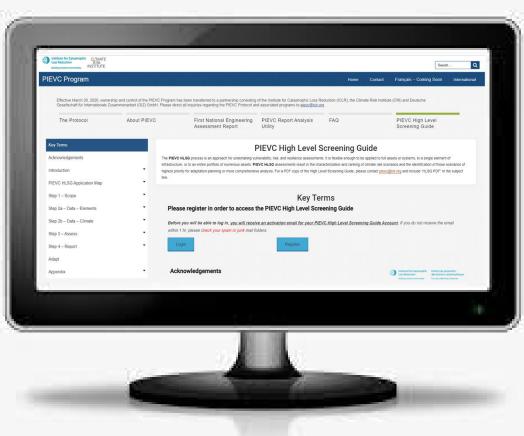
ClimateData.ca

ClimateData.ca


- Examples
 - Climate
 Change
 Resilience
 Assessments
 (CCRA)

Climate Change Resilience Assessment

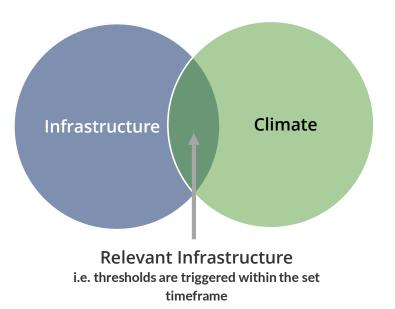
Risk management approach to anticipate, prevent, withstand, respond to, and recover from a climate change related disruption or impact.



Climate Change Resilience Assessment

Methodology

• PIEVC

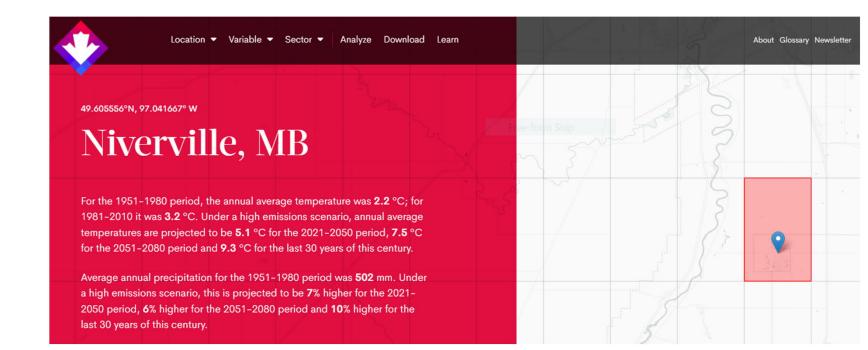


https://pievc.ca/pievc-high-level-screening-guide/

Risk Assessment

Risk = Likelihood X Consequence

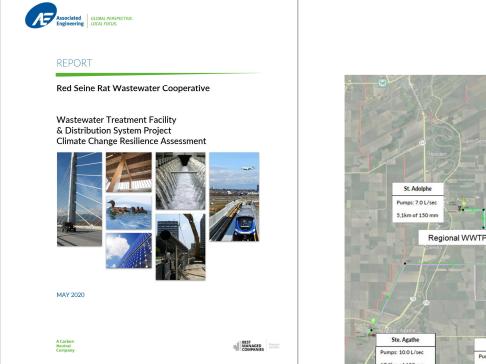
5		Catastrophic	0	FOOD		te Change	FLOO	DD 25
4		Major	0	4	8	12	16	20
3	CONSEQUENCE	Moderate	0	3	6	9	Adaptation	15
2	QUENCE	Minor	0	2	4	6	Q FLOC	10
1		Insignificant	0	1	2	3	4	5
0		No Effect	0	0	0	0	0	0
			Negligible Not Applicable	Highly Unlikely Improbable	Remotely Possible	Possible Occasional	Somewhat Likely Normal	Likely Frequent
					LIKELI	HOOD		
			0	1	2	3	4	5


ClimateData.ca - Examples

RSR Wastewater Cooperative

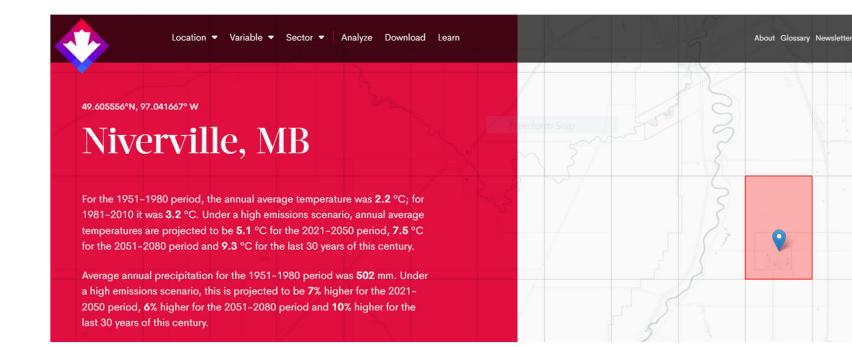
ICIP Application

Climate Lens


RSR Wastewater Cooperative

		Climate Parameter																																	
Consequence Score			Temperature						Precipitation as Rain Precipitation as Snow Ice Storm River Flood Wind												nd		Eva												
0 - No Effect 1 - Insignificant			Extreme			Extreme				Frequency			Intensity			Drought Conditions			Winter Precipitation		on	Ice Accretion				Height			Extreme Winds		ds				
2 - Minor 3 - Moderate 4 - Major 5 - Catastrophic		Very Hot Days (+30 deg C)			Very Cold Days (-30 deg C)			Heavy Precipitation Days		tion	Five Day Max Precipitation			Dry Days			Snow			Ice Storm			Flood Stage 1:100 year			Tornado			Evap						
Infrastructure Components		Y/N	- 6	c	R	YIN	L	C R	R Y		c	R	Y/N	L	c	R	Y/N	L	c f	a yi	N L	c	R	Y/N	L	c	R Y	N L	c	R	Y/N	L.	c	R Y	N L
Regional Wastewater Treatment Facility																										-		-							
	Present		2		6		2	24	4	3		9		3		9		3	e	3	3		12		3	3	2	3		6		3		9	3
Operation and Maintenance	2050	Y	3	3	9	Y	1	2 2	2	Y 4	3	12	Y	4	3	12	Y	4	2 8	3	4	4	16	Y	2	4	в	Y 5	2	10	Y	5	3	15	
	2080		4		12		18.	12	2	: 5		15		5		15		(4)	8	3	4		16		1	2	4	5	1	10		5		15	3
	Present		2		4		2	4	4	3		9		3		6		3	3	3	3		9		3	1	9	3	(6		3		6	
Site and Access Roads	2050	Y	3	2	6	Y	1	2 2	2	Y 4	3	12	Y	4	2	8	Y	4	1 4	ŧ)	4	3	12	Y	2	3	8	Y 5	2	10		5	2	10	
	2080		4		8		1	2	2	5		15		5		10		4	34	ŧ	4		12		1	3	3	5		10		5		10	2
	Present		2		6		2	e	3	3		9		3		6		3	c	2	3		9		3		9	3		6		3		12	
Building and Structures	2050	Y	3	3	9	Y	1	3 3	3	Y 4	3	12	Y	4	2	8		4	C	1	4	3	12	Y	2	3	8	Y 5	2	10	Y	5	4	20	32
	2080		4		12		1	3	3	5		15		5		10		4	c	2	4		12		1		3	5		10		5		20	
	Present		2		6		2	e	3	3		12	5	3		0		3	0	2	3		0		3	3	D	3		0		3		0	3
Treatment Systems	2050	Y	3		9	Y	1	3 3	3	Y 4	4			4		0		4	C	þ	4		0		2		D	5		0	4	5		0	Y 4
	2080		4		12		1	3	3	5		20		5		0		4	C		4	_	0		1		D	5	-	0		5	\rightarrow	0	4
	Present		2		8	-	2	-	3	3		6		3		0		3	C	_	3	-	9		3	_	9	3	-	0	ä	3		0	3
Building HVAC	2050	Y	3	4	12	Y	1	3 3	3	Y 4	2	8		4		0		4	c	2	4	3	12	Y	2	3	в	5		0		5		0	4

RSR Wastewater Cooperative



Melville Wastewater Lagoon Expansion

ICIP Application

Climate Lens

Onion Lake Aquatics Centre

Analyze Download Learn

• Green and Inclusive Community Buildings Application

53.7186	15°N, 109	.80866° W		
	-			

Location Variable V

Onion Lake 119–2, SK

For the 1951–1980 period, the annual average temperature was **0.6** °C; for 1981–2010 it was **1.5** °C. Under a high emissions scenario, annual average temperatures are projected to be **3.3** °C for the 2021–2050 period, **5.7** °C for the 2051–2080 period and **7.2** °C for the last 30 years of this century.

Average annual precipitation for the 1951–1980 period was **427** mm. Under a high emissions scenario, this is projected to be **7**% higher for the 2021– 2050 period, **14**% higher for the 2051–2080 period and **12**% higher for the last 30 years of this century.

* These values reflect those of the \sim 10 km x 6 km grid cell that Onion Lake 119-2 lies within and do not necessarily reflect the exact point that you select, particularly in areas with varying microclimates .

Onion Lake Aquatics Centre

3.1 Hazard Type	3.2 Hazard-related	3.3 Climate Information Source (location,	3.4 Qualitative or Quantitative
	Climate Indices	resolution, scenario, link)	Change in Metric Between
			Present and Infrastructure
			Lifespan
Temperature	Very Hot Days	Source: Climate Atlas	Current: 5 days
	(>30°C) (days)	Locations: Lethbridge (~ 50 km south)	2050: 13 days
		Resolution:	2080: 19 days
		Scenario: RCP8.5 (for assessment)/ RCP 4.5	Increasing number of very hot in
		Link: https://climateatlas.ca/	infrastructure lifespan
	Hottest Day (°C)	Source: ClimateData.ca	Current: 30.6 °C
		Locations: Onion Lake	2050: 33.7 °C
		Resolution: ~10 km x 6 km grid	2080: 37.3 °C
		Scenario: RCP8.5 (for assessment)/ RCP 4.5	Increasing hottest days value in
		Link: https://climatedata.ca/	infrastructure lifespan
	Frost Days (days)	Source: ClimateData.ca	Current: 205 days
		Locations: Onion Lake	2050: 183 days
		Resolution: ~10 km x 6 km grid	2080: 167 days
		Scenario: RCP8.5 (for assessment)/ RCP 4.5	Decreasing number of frost day
		Link: https://climatedata.ca/	in infrastructure lifespan
Precipitation	Annual Precipitation	Source: ClimateData.ca	Current: 433mm
	(mm)	Locations: Onion Lake	2050: 463mm
		Resolution: ~10 km x 6 km grid	2080: 493mm
		Scenario: RCP8.5 (for assessment)/ RCP 4.5	Average annual precipitation for
		Link: https://climatedata.ca/	the 1951-1980 period was 433
			mm. Under a high emissions
			scenario, this is projected to be
			7% higher for the 2021-2050
			period, 15% higher for the 2051
			2080 period and 11% higher for
			the last 30 years of this century

Onion Lake Aquatics Centre

TECHNICAL MEMORANDUM

Issue Date:	July 6, 2021	File No.:	File No.:					
To:	Onion Lake Aquatic Centre Application	Previous Issue	Date:					
From:	Jeff O'Driscoll, P.Eng., IRP	Project No.:	2021-4614					
Client:	Onion Lake Cree Nation							
Project Name:	Aquatic Centre							
Subject:	Climate Resilience Assessment							

CLIMATE RESILIENCE ASSESSMENT

Associated

In accordance with funding requirements, a climate risk assessment was completed on the Onion Lake Cree Nation Aquatic Centre to identify climate change risks and to document measures mitigating medium and high risks.

The assessment followed Annex B: Climate Resilience Resources including the guidance provided in the Climate Resilience First Assessment details and worksheets. The assessment also incorporated portions of the PIEVC High Level Screening process to quantify how, medium and high level riske related to the Aquatic Centre. The Assessment was used to answer questions '54', '55', and '56' of the application. Test related to these specific questions is listed below:

Large Retrofit and New Build Projects

- 54. Is your project at risk of, or vulnerable to climate-influenced risks or natural hazards such as flooding, earthquakes, wildfires, permafrost melt or coastal erosion? Please provide an assessment of the current and future climate risks for the proposed project. The assessment should consider climate risks during the construction phase as well as changes during the planned operation and maintenance phases over the entire lifespan of the building or asset.
- Using the text box, please provide an assessment of the current and future climate risks towards the
 project you are proposing. The assessment should consider climate risks during the construction phase
 as well as changes in climate risks during the planned operation and maintenance phases over the entire
 lifespan of the building or asset. For example, wildfires will present a risk to a community center project
 if it is located near a forested area that is experiencing increased occurrence of drought and increasing
 temperatures.
- You may wish to consult multiple climate models to consider the range of potential future changes.
 Please refer to Annex B for a list of resources, including a Climate Resilience First assessment worksheet that provides a step-by-step guide for assessing climate risks. This worksheet can be used to determine the answer(s) to this question. [Character limit: 4000]

Application Text (Question '54'):

The proposed Onion Lake Aquatic Centre (Project) is resilient to climate-influenced risk including related to increased temperature, increased precipitation and extreme events. Through a resilience assessment, following the funding requirements, several medium and high level risks were identified based on current and future climate horizons

NEW AQUATICS FACILITY

Gretna Arena Upgrades

Green and Inclusive Community Buildings Application

Location - Variable - Sector - Analyze Download Learn	About Glossary Newsletter
49.007778°N, 97.561667° W	
Gretna, MB	Rectangular Snip
For the 1951–1980 period, the annual average temperature was 3.1 °C; for 1981–2010 it was 3.8 °C. Under a high emissions scenario, annual average temperatures are projected to be 6 °C for the 2021–2050 period, 8.4 °C for the 2051–2080 period and 10.2 °C for the last 30 years of this century.	
Average annual precipitation for the 1951–1980 period was 503 mm. Under a high emissions scenario, this is projected to be 7 % higher for the 2021– 2050 period, 5 % higher for the 2051–2080 period and 10 % higher for the last 30 years of this century.	
* These values reflect those of the ~10 km x 6 km grid cell that Gretna lies within and do not necessarily reflect the exact point that you select, particularly in areas with varying microclimates .	

City of Regina 4th Ave Pumping Station

CCRA as part of Predesign

City of Regina

REPORT

City of Regina

Associated Engineering 75 YEARS

4th Avenue Pumping Station

Climate Resilience Assessment

DECEMBER 2021

Infrastructure Component	Risk Assessment Comments and Resilience Measures
Ventilation of Chemical Storage Areas	Risk Assessment Summary: Medium Risks: Increasing average temperatures and very hot days may affect capacity of the HVAC to meet occupancy and other level of service requirements for the facility. Winter precipitation (snow) could affect intakes and block access to equipment. High Risks: Increasing very hot days may exceed the capacity of the HVAC to meet occupancy requirements or overload equipment resulting in failure. Resilience Measures: HVAC design should consider climate projection data on temperature, especially related to very hot days and heat waves in the design of the HVAC systems.

CRWC Drought Management Study

5.12 **Drought Response**

Once the Drought Stage is established based on the indicators and flow monitoring provided by the Province, a detail response should be initiated for the affected area(s). Response will be classified as Normal, Moderate, Severe and Extreme.

For each Drought Stage, the Province, CRWC and the Municipal Members and customers will have a different response. In each successive stage, the response escalates from normal, business as usual operations to extreme measures. This includes more frequent monitoring, meetings and reporting, staged demand reduction with more severe restrictions and actions by each stakeholder.

For the Province, the response is outlined in the Manitoba Drought Management Strategy, For CRWC and their Members, the following responses have been drafted for review and discussion and initial implementation.

Drought Stage Summaries are included in the Appendix.

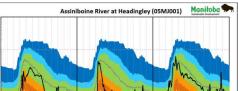
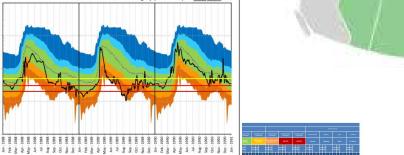



Figure 5-4 Sample Assiniboine River Streamflow for the Assiniboine River at Headingley

Questions?

Contact Jeff O'Driscoll, odriscollj@ae.ca

Questions?

Thank you!

www.climatewest.ca E: <u>info@climatewest.ca</u> T: 204.995.6514 Toll Free: 1.877.938.6650