

Winnipeg, Manitoba, 3 May 2023

Projected Changes in Climate for Alberta, Saskatchewan, and Manitoba

Danny Blair, PhD climateguy@gmail.com d.blair@uwinnipeg.ca

THE UNIVERSITY OF WINNIPEG

We are storytellers

The Story I Tell, Quickly

Concentration of Atmospheric CO₂ since 1700

Concentration of Atmospheric CO₂ since 1700

Concentration of Atmospheric CO₂ since 1700

The Keeling Curve

The pandemic lockdown did not have a substantial impact on the concentration of carbon dioxide in the atmosphere.

Average concentration in 2022 was 418.56 ppm

https://gml.noaa.gov/webdata/ccgg/trends/co2/cc 2 annmean mlo.txt

Global Surface Temperature Relative to 1880—1920 Mean

Updated March 2023

2022 tied for 5th warmest year (with 2015)

https://www.nasa.gov/press-release/nasa-says-2022-fifthwarmest-year-on-record-warming-trend-continue

2022 was **1.16°C** warmer than preindustrial (excluding shortterm variability)

http://www.columbia.edu/~jeh1/mailings/20 23/Temperature2022.12January2023.pdf

Greenhouse Gases

Carbon Dioxide

Solar Volcanic Aerosols

Tropospheric Aerosols and Surface Albedo

http://www.columbia.edu/~mhs119/Burden/Table.A1.ann.txt

Our Future Climate

Depends on Emissions

So far, we have increased the radiative forcing by about 2.7 W/m² mostly from carbon dioxide emissions

Which carbon emissions scenario will we follow?

RCP = Representative Concentration Pathway

RCPs have been replaced by SSPs (Shared Socioeconomic Pathways)

After: van Buren et al. (2011)

five different 'carbon scenarios'

Relationship between Global Mean Temperature Change and Canadian Mean Temperature Change

- Canada is warming at about double the global rate
- And will continue to do so in the coming decades
- The Arctic is warming at about 3 times the global rate
- Snow-ice albedo feedback (lower reflectivity)
 Lapse-rate feedback (stronger in high latitudes)
 Planck feedback (proportionally less outward emission)
 Cloud feedback (cloud keeps heat in)

Observed and Projected Temperature

Prairie Climate Centre **Climate Atlas of Canada** cimateat as.ca

THE UNIVERSITY OF VINNIPEG

v2①

High 100 M 27.6 77.4

v2①

Annual Temperature

Seasonal Temperature

High emissions Low emissions Data Source: PCIC/PCC

The Consequences of Raising the Average Temperature

https://ipcc.fandom.com/wiki/151.3.3_Extreme_Events

The Clausius-Clapeyron relationship predicts an increase in the water holding capacity of air of approximately:

7% per degree Celsius rise in temperature

the Clausius-Clapeyron equation

Extreme daily precipitation is expected to increase at close to the 7 percent per °C increase in the near-surface atmospheric moisture holding capacity determined by

IPCC AR6, Chapter 8

Generally Wetter Everywhere Except Slightly Drier In Southern Canada In the Summer **Especially with High Carbon**

2051-2080 Projected Change in **July Total Precipitation**

Under the RCP8.5 scenario, relative to a baseline of 1976-2005

Change in Precipitation (%) **Relative to 1976-2005**

The information disseminated by the Prairie Climate Centre including but not restricted to maps, tables, statistics and interpretations, is provided as a public service. It is provided without any warranty or representation, express or implied, as to its accuracy or completeness. Any reliance you place upon the information contained here is your sole responsibility and strictly at your own risk. In no event will the Prairie Climate Centre be liable for any loss or damage whatsoever, including without limitation, indirect or consequential loss or damage, arising from reliance upon the data or derived information.

© 2019 by the Prairie Climate Centre. Visit climateatlas.ca for more information. Map Data: Ensemble of 24 CMIP5 models (BCCAQv2 Statistically Downscaled Climate Scenarios) provided by the Pacific Climate Impacts Consortium, University of Victoria (pacificclimate.org).

Troughs and Ridges in the Upper Atmosphere

- Areas under troughs tend to be cool and wet
- Areas under ridges tend to be warm and dry

What the Prairies Should Expect in the Coming Years:

- Climate change will continue for decades and beyond
- Higher temperatures
- Shorter, warmer winters
- Longer, hotter summers
- More frequent heat waves
- More frequent droughts
- More intense rainfalls
- Changing hydrological seasons
- Occasional severe cold events, still
- Climates marching northward
- Even more variability in the weather
- Surprises

• Climate changes are more pronounced under the higher carbon scenarios

There are definitely some positive aspects for the Prairies

Much more potential for floods, droughts, wildfires, extreme storms, and unanticipated events

Thermal Climate Migration

Whose Climate Will We Get?

American Climate Analogues for Lethbridge Projected Temperatures

A CANADA SIST OF

Canada's National Adaptation Strategy

Building Resilient Communities and a Strong Economy

For comments

Government of Canada Adaptation Action Plan

Figure 5. Canada's adaptation cycle

Academic institutions, researchers, scientists, and non-governmental organizations play a key role in generating and sharing knowledge on climate change adaptation and helping to mobilize adaptation action, including by:

- Incorporating adaptation in the curriculum for professional programs.
- Including adaptation as an eligible specialty for co-op programs and internships.
- Convening and leveraging research networks nationally and internationally.
- Undertaking climate adaptation research including in innovative solutions and adaptive management.
- Raising awareness of climate change and adaptation.
- Working with governments and other partners to understand, assess, and mobilize knowledge about climate impacts and develop new technology and innovative solutions.

Illustrative action: Data, Research, and Knowledge Mobilization The Prairie Climate Centre (PCC), at the University of Winnipeg, brings an evidence-based perspective to communicating the science, impacts, and risks of climate change through high-quality maps, documentary video, research reports, and plain-language training, writing, and outreach. The PCC's goal is to inspire citizen participation, to support communities in making meaningful and effective adaptation and mitigation decisions for current and future generations, and to help Canadian society move from risk to resilience. The flagship project of the PCC is the <u>Climate Atlas of Canada</u>.

Every Weather-Affected Community and Business Should:

- Conduct an assessment of their vulnerabilities
 - Based on experience and projections
- Identify opportunities
- Identify highest risks
 - Based on potential impacts and consequences
 - Of course, to do so requires:
 - Financial resources
 - Personnel
 - Expertise
 - Data
 - Time

Prairie Climate Centre

From Risk to Resilience

https://prairieclimatecentre.ca/

Building Prairie Resilience https://climatewest.ca/

Winnipeg, Manitoba, 3 May 2023

Did I Leave Time for Questions?

Danny Blair, PhD climateguy@gmail.com d.blair@uwinnipeg.ca

THE UNIVERSITY OF WINNIPEG

Winnipeg, Manitoba, 3 May 2023

SPRING

1970-2018

Canada and U.S. Mean Temperature Linear Trends °C per century

Significant POS trend: n = 266Significant NEG trend: n = 15Not significant:n = 1175

SUMMER

1970-2018

Canada and U.S. Mean Temperature Linear Trends °C per century

Significant POS trend: n = 535Significant NEG trend: n = 22Not significant:n = 482

FALL

1970-2018

Canada and U.S. Mean Temperature Linear Trends °C per century

Significant POS trend: n = 438Significant NEG trend: n = 10Not significant:n = 586

WINTER

1970-2018

Canada and U.S. Mean Temperature Linear Trends °C per century

Significant POS trend: n = 354Significant NEG trend: n = 4Not significant:n = 680

Ratio of Local Warming to Global Warming:1950-1920

Location	Latitude	Annual	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
CHURCHILL	58.73	1.5	4.1	1.9	2.0	-0.5	-1.5	2.4	2.6	1.4	2.6	1.3	-1.4	5.3
LYNN_LAKE	56.85	0.7	4.6	0.1	0.6	-2.7	-1.2	0.2	1.4	0.9	2.5	0.4	0.2	5.3
GILLAM	56.35		4.4	1.1	1.7	-0.3	-0.4	1.3	1.7	1.6	3.1	1.4	0.5	5.8
THOMPSON	55.80	1.0	4.1	0.6	1.2	-1.4	-1.4	0.3	1.0	1.0	2.6	0.5	0.1	4.4
FLIN_FLON	54.68	1.9	5.2	0.6	1.0	-0.8	-1.6	1.0	2.2	1.9	3.3	0.9	1.2	5.8
THE_PAS	53.97	1.1	5.0	0.7	1.1	-0.3	-1.3	0.5	1.7	1.3	2.6	-0.1	0.2	5.0
GRAND_RAPIDS	53.18	0.8	5.0	0.4	0.9	-0.6	-1.5	-0.4	0.7	0.4	1.9	0.0	0.4	4.6
SWAN_RIVER	52.12	0.6	4.7	-0.7	1.0	-0.1	-1.6	-0.6	0.1	0.3	1.5	-0.9	-0.4	3.7
DAUPHIN	51.10	1.4	5.4	0.5	1.7	0.4	-1.4	0.3	0.9	0.9	2.1	-0.7	0.9	5.1
GIMLI	50.63		4.4	-0.4	1.6	0.4	-0.5	0.6	0.4	0.2	1.8	-0.1		4.4
GREAT_FALLS	50.52			0.6		-0.7	-1.7	0.1	0.2	0.6	2.2			
SHOAL_LAKE_CS	50.45	0.8	4.8	-0.3	0.3	-0.1	-1.2	0.2	0.9	0.4	2.1	-0.4	0.4	3.4
PIWA	50.18	2.2	5.1	1.0	2.6	0.5	0.1	2.0	2.1	2.4	3.1	0.8	1.5	5.6
WINNIPEG	49.92	1.3	4.9	0.1	1.5	0.2	-1.6	0.5	0.4	0.9	2.2	-0.1	1.4	4.6
BRANDON	49.90	0.7	4.7	-1.3	0.4	-0.6	-1.7	-0.2	0.7	0.0	1.6	-1.1	0.0	3.0
PORTAGE_SOUTHPORT	49.90	1.8	5.6	0.3	1.9	0.5	-1.1	0.4	0.6	1.2	1.9	0.3	1.4	5.1
INDIAN_BAY	49.62	1.2	5.4	1.0	2.1	-0.6	-1.4	-0.1	-0.1	0.1	1.9	-0.3	1.2	4.9
CYPRESS_RIVER	49.57	2.5	6.6	1.1	2.9	0.8	-0.5	1.1	1.8	1.6	3.0	-0.1	1.6	5.8
DEERWOOD_RCS	49.40		5.5	0.6	2.3	1.2	-1.5	0.5	0.8	1.6	3.1	0.4		4.7
MELITA	49.28	2.0	6.7	0.2	1.9	1.1	-0.2	1.1	1.8	1.7	3.0	0.3	1.7	4.9
MORDEN_EXP_FARM	49.18	0.9	4.8	-0.3	1.5	-0.4	-1.8	-0.1	0.4	0.1	1.7	-0.6	0.7	3.9
SPRAGUE	49.02	2.7	5.9	1.0	2.4	0.1	0.5	2.1	2.3	2.1	3.3	1.0	2.9	5.9
EMERSON	49.00		4.4	-1.0	0.2	-1.0	-2.1	-0.3	-0.1	-0.5	1.4	-1.2	1.3	

Manitoba

Ratio of Local Warming to Global Warming:1950-1920

Location	Latitude	Annual	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
WHITESAND-SOUTHEND	56.33		7.4	1.7	0.9	-2.7	-1.6	0.4	1.1	1.4	2.3	0.3	0.5	5.7
BUFFALO_RROWS	55.83	1.4	5.2	0.9	2.2	-0.9	-0.1	0.8	1.7	1.9	2.3	-0.4	1.1	5.0
ISLAND_FALLS	55.53	1.3	5.7	2.2	2.1	-1.3	-1.5	-0.5	0.2	0.5	2.0	-0.4	-0.2	6.0
LA_RONGE	55.15	1.3	5.2	0.9	1.4	-1.1	-1.0	0.2	1.2	1.6	1.9	-0.3	1.3	5.3
MEADOW_LAKE	54.13	0.9	6.2	0.1	0.9	-1.6	-2.0	-0.1	0.6	0.3	1.2	-1.4	1.0	4.8
WASKESIU_LAKE	53.92		5.3	-0.4	2.8	0.3	0.2	1.0	2.2	2.4	3.5	0.3	1.2	
NIPAWIN	53.33	0.6	5.0	-0.4	1.3	-0.7	-1.8	-0.5	0.1	0.6	1.7	-0.9	0.4	4.9
PRINCE_ALBERT	53.22	1.4	6.2	0.5	1.5	-0.9	-0.9	0.0	1.1	0.8	1.9	-0.7	1.0	5.5
WASECA	53.13		6.5	0.9	1.0	-0.5	0.0	0.6	1.5	1.1	2.1	-0.8	1.5	4.7
HUDSON_BAY	52.82	1.2	5.3	0.4	1.2	0.0	-1.1	-0.6	1.0	1.1	1.8	-0.7	0.5	5.4
MELFORT	52.82	1.2	5.2	0.0	1.1	-0.6	-1.2	-0.3	0.5	0.7	2.1	-0.8	0.5	5.0
NORTHBATTLEFORD	52.77	0.4	5.9	-0.3	0.5	-1.0	-2.0	-0.9	-0.1	-0.4	1.1	-1.5	0.5	4.2
SCOTT	52.37	0.8	6.2	0.0	0.8	-0.3	-1.1	-0.6	0.5	-0.1	1.4	-1.3	1.1	3.9
MUENSTER	52.33		6.3	0.5	1.3	0.2	-1.3	-0.2	0.5	0.6	2.4	-1.2	0.4	5.5
SASKATOON	52.17	1.0	6.4	-0.7	1.3	-0.2	-0.9	-0.4	0.4	0.0	1.7	-1.4	0.8	4.2
WYNYARD	51.77	0.8	5.8	-0.9	0.7	-1.0	-1.5	-0.4	0.9	0.6	1.9	-1.3	0.5	4.2
WATROUS	51.67	1.3	6.5	-0.6	1.6	-0.4	-0.7	-0.2	0.5	0.4	2.1	-1.0	0.7	4.2
ROSETOWN	51.57		5.8	-0.2	1.7	-0.4	-1.1	-0.5	0.2	-0.3	1.6	-1.4	1.2	4.3
KINDERSLEY	51.52	0.7	5.7	-1.3	1.2	-0.6	-0.3	-0.9	-0.2	0.1	1.5	-1.3	0.9	2.1
OUTLOOK	51.48	0.9	7.4	-0.2	1.3	-0.7	-1.0	-0.9	-0.2	-0.4	1.3	-1.4	1.1	4.4
YORKTON	51.27		6.1	-0.1	1.9	0.2	-0.6	0.0	1.1	1.0	2.4	-0.6	0.5	4.6
KELLIHER	51.25	1.9	6.0	0.4	1.5	0.2	0.0	0.5	2.0	1.8	2.9	-0.1	0.3	4.3
LEADER	50.92	0.4	6.0	-1.0	1.9	-1.1	-1.1	-0.7	0.1	0.0	1.6	-1.7	0.9	1.7
BEECHY	50.83	1.2	7.1	0.3	1.8	-0.1	-0.5	-0.7	0.5	0.2	2.0	-0.7	1.2	3.8
QU_APPELLE	50.57	1.8	6.8	0.9	2.6	0.9	-0.1	0.1	1.2	1.6	3.2	0.3	1.6	5.7
INDIAN_HEAD	50.55	1.2	6.0	0.1	1.4	-0.6	-0.7	-0.1	-0.4	0.3	2.3	-0.8	0.6	4.6
REGI	50.43	0.7	5.6	-0.8	0.9	-0.4	-1.0	-0.7	-0.2	-0.2	1.8	-1.0	0.5	3.8
BROADVIEW	50.37	0.9	6.1	-0.4	1.1	-0.3	-0.9	-0.1	0.5	0.4	2.0	-0.8	0.4	4.2
MOOSE_JAW	50.33	0.8	6.8	-0.8	1.4	-0.3	-0.9	-0.5	-0.6	-0.5	1.6	-1.2	0.9	3.4
SWIFT_CURRENT	50.30	1.4	6.4	-0.2	1.7	0.1	0.2	-0.5	0.7	1.0	2.4	-0.2	1.8	2.9
SWIFT_CURRENT_CDA	50.27	1.0	6.1	-0.3	1.4	-0.5	-0.7	-0.7	0.3	0.3	1.6	-1.2	1.3	2.7
KIPLING	50.20	1.2	6.4	0.2	1.8	0.0	-1.1	-0.6	0.0	0.9	2.6	-0.7	0.8	4.6
MAPLE_CREEK	49.90		7.4	0.0	1.7	0.0	-0.1	0.2	2.0	1.5	2.0	-0.9	1.7	3.2
YELLOW_GRASS	49.82		5.8	0.1	2.7	0.1	-0.4	0.1		1.0	3.0	-0.8	0.8	5.1
WEYBURN	49.70	1.7	5.6	-0.4	1.5	0.6	-0.2	0.6	1.2	1.5	2.9	-0.4	1.1	3.9
KLINTONEL	49.43		4.6	-2.6	-0.1	-1.0	-0.8	-1.3	0.7	1.0	2.3	-0.9	1.1	1.0
ESTEVAN	49.22	1.3	5.9	-0.9	1.7	0.7	-0.1	0.6	0.4	0.8	2.3	-0.2	1.6	3.4
VAL_MARIE	49.07		5.9	-0.2	1.7	0.2	-0.9	-1.2	-0.1	-0.2	1.8	-0.2	1.7	2.6

Saskatchewan

Mann and Blair, in progress

Ratio of Local Warming to Global Warming:1950-1920

Location	Latitude	Annual	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
FORT_CHIPEWYAN	58.77		5.4	1.4	0.9	-1.6	-1.1	0.5	1.4	1.0	1.2	0.1	1.9	4.8
HIGH_LEVEL	58.62	1.6	6.4	2.0	1.0	-0.8	0.2	0.6	1.8	1.4	1.7	0.6	0.7	5.0
FORT_MCMURRAY	56.65	1.2	5.3	1.2	0.5	-1.6	-1.1	0.6	1.7	1.1	1.6	-0.5	1.5	5.9
CLEARDALE	56.32		7.1	3.8	2.1	0.5	1.5	1.3		1.7	1.9	0.3		6.0
PEACE_RIVER	56.23	1.2	6.7	1.4	0.2	-1.1	0.3	0.7	1.1	0.9	1.4	-0.6	1.3	4.1
FAIRVIEW	56.08			2.8	1.1	0.6	2.4	1.6	1.6	1.6	2.5		2.1	
SLAVE_LAKE	55.30	1.3	5.1	1.4	0.3	-1.3	-0.1	0.9	1.9	1.4	1.9	-0.4	1.4	4.3
BEAVERLODGE	55.20	0.8	6.0	1.9	-0.6	-0.9	0.5	0.5	0.7	0.3	0.8	-1.3	0.1	3.5
GRANDE_PRAIRIE	55.18	0.7	5.6	1.6	-0.8	-1.2	0.0	0.3	1.1	0.6	1.2	-1.1	0.5	3.8
ATHABASCA	54.63		7.0	1.5	1.0	-1.2	-0.5	0.3	1.5	1.1	1.8	-1.2	1.7	5.9
COLD_LAKE	54.42	1.4	5.8	1.3	1.6	-0.9	-0.3	0.7	1.9	1.4	2.3	-0.7	1.7	5.1
FORT_ASSINIBOINE	54.42		6.7	0.5	-0.6	-0.4	0.1	0.9	1.2	1.1	2.0	-0.5	1.6	5.2
CAMPSIE	54.13	1.7	5.8	0.9	-0.1	-0.5	0.0	0.5	1.5	1.2	2.1	-0.9	1.2	4.4
VEGREVILLE	53.50	1.5	7.0	0.9	1.6	-1.1	0.0	0.9	1.6	1.2	1.8	-1.1	1.4	4.4
RANFURLY	53.42	1.1	6.1	0.3	0.6	-1.3	-0.2	0.3	1.4	0.9	2.0	-1.0	0.9	4.3
ENTRANCE	53.40		5.7	1.8	-0.2	-1.0	1.1	1.4	2.2	1.4	1.7	-0.8	0.2	
EDMONTON	53.30	0.6	5.1	0.0	-0.3	-1.4	-0.5	0.1	0.9	0.2	1.5	-1.2	0.9	2.4
CAMROSE	53.05	1.7	6.3	0.9	1.6	-0.2	0.5	0.8	1.7	1.2	2.1	-0.5	1.7	4.1
JASPER	52.93	1.2	5.8	0.3	0.5	-0.5	0.4	0.3	0.8	-0.2	1.4	-0.5	2.2	3.1
NORDEGG	52.50		6.0	-0.5	1.3	-0.8	0.7	0.8	1.9	1.4	2.6	0.2	1.8	2.4
LACOMBE	52.45	1.3	5.7	0.9	1.1	-1.0	-0.4	-0.1	0.9	0.9	1.4	-1.0	1.0	3.2
ROCKY_MTN_HOUSE	52.42	0.2	5.1	-1.1	0.1	-1.1	-0.6	-1.2	0.3	-0.3	0.6	-1.2	0.6	2.2
STETTLER_NORTH	52.35	2.4	7.5	1.8	2.3	0.3	1.1	1.1	2.1	2.3	3.0	0.7	1.5	4.2
RED_DEER_A	52.18	1.0	5.3	0.2	0.6	-1.0	-0.4	-0.1	1.1	0.6	1.4	-0.9	1.5	2.9
COROTION	52.07		7.7	2.0	2.6	0.5	0.8	0.4	1.3	1.4	2.6		2.6	4.9
OLDS	51.77		5.5	0.1	0.5	-0.1	0.4	0.4	1.7	1.6	2.1	-0.2	1.8	2.3
BANFF	51.20	1.5	6.3	0.2	1.3	0.1	0.0	-0.4	0.9	0.9	1.6	-0.3	2.0	3.1
CALGARY	51.12	0.9	5.6	-0.8	0.5	-0.7	0.1	-0.4	1.2	1.3	1.6	-1.0	1.4	2.4
KASKIS	51.03	0.9	5.0	-0.1	1.1	0.2	1.0	0.3	1.7	1.4	1.7	-0.8	0.7	0.1
GLEICHEN	50.93		8.9	2.1	1.7				-0.7	-0.4	1.2	-0.6	2.6	5.2
MEDICINE_HAT	50.03	1.0	6.2	-0.2	1.4	-0.3	-0.8	-0.8	1.0	0.4	1.8	-0.4	1.6	2.2
TABER	49.80		5.7	-0.5	1.3	-0.1	-0.1	-0.5	0.6	0.6	1.6	-0.8	0.6	1.6
LETHBRIDGE_A	49.63	1.4	6.5	0.2	1.7	0.2	0.1	-0.2	0.6	0.8	2.0	-0.4	2.3	2.9
PINCHER_CREEK	49.52	0.9	5.6	-0.6	0.3	0.0	-0.2	-0.6	0.0	0.3	1.3	-1.2	1.2	1.7
FOREMOST	49.48		5.2	1.8	2.1	1.0	0.7	0.0	1.6	1.8	2.6	0.5	2.5	2.7
CARDSTON	49.20	1.4	6.0	-0.1	1.8	-0.1	0.3	0.1	1.7	1.4	1.7	-1.0	1.2	2.6
CARWAY	49.00		5.3	-0.1	0.6	-0.3	0.3	0.2	1.8	1.1	1.1	-1.1	1.6	1.4

Alberta

