

MANITOBA CLIMATE RESILIENCE TRAINING

Capacity Enhancement in Vulnerability and Risk Assessment (CEVRA) Project Workshop

Municipalities and Watershed Districts

Beausejour, MB

March 20, 2024

AGENDA

10:00 - 10:15 Introductions 10:15 - 10:30 **Getting Started** 10:30 - 12:00 **Assessing Current and Future**

Climate Risks

Lunch Break

Stage 1: Getting Started

Stage 2: Assessing Climate Risks

12:30 - 1:30 Stage 2: Assessing Climate Risks, cont. 1:30 - 3:00 **Next Steps Stage 3: Adaptation Actions**

INTRODUCTIONS

Introductions - HTFC

The Leaf / Diversity Gardens

Oodena Celebration Circle Resilience TRAINING

The Municipal Planning Guide to Zoning Bylaws in Manitoba Component A: Introduction to Zoning
 Kelsey Planning District

Kelsey Planning District
DEVELOPMENT PLAN

Zoning Bylaw Guide

Kelsey Planning District Development Plan

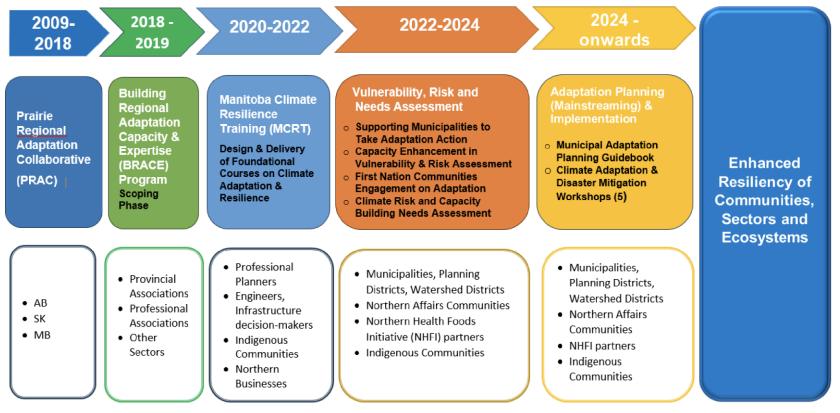
Introductions - HTFC


Bioswales

HTFC's Environmental Planning and Design Projects

We now invite you to share:

- Your name
- Your municipality, watershed district or organization
- Your role



Manitoba Climate Adaptation Initiatives

Climate Adaptation and Disaster Mitigation Workshops

RESILIENCE TRAINING

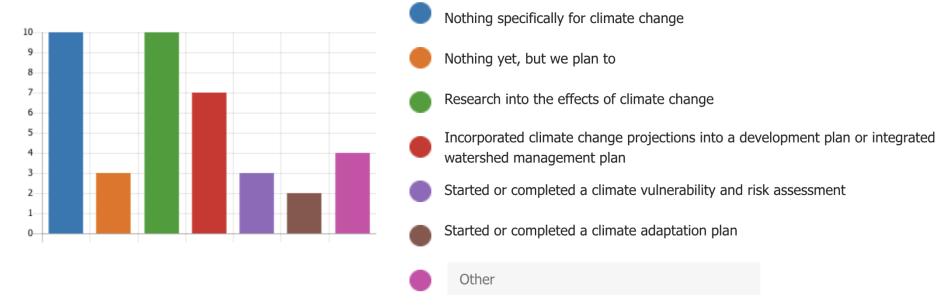
- Make MB a safe & desirable place to live and invest in under a changing climate.
- Invest in training and information to make the best decisions going forward.

Manitoba's Adaptation Objectives

 Capture the adaptation & resiliency work already occurring across the province and document best practices

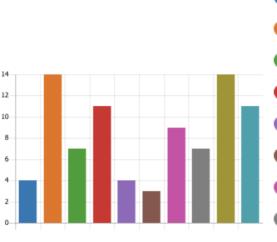
 Consider policy and programs that support broader climate mitigation and adaptation efforts

ESILIENCE TRAINING



What We Heard

 We asked: What work has your municipality or district done to date to prepare for a changing climate?



What We Heard

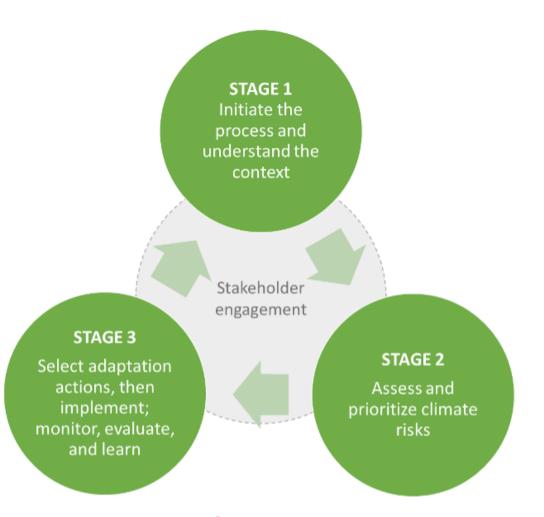
 We asked: What areas of focus would help you get the most out of this workshop?

- Background information on climate change
- Understanding future projections for your municipality
- How to use online tools like the Climate Atlas of Canada
- Identifying climate-related hazards in your community
- Exploring the impacts of climate-related hazards
- Predicting how these hazards will change in the future
- Walking through a vulnerability & risk assessment together
- Prioritizing climate-related risks to prepare for in planning
- Discussing actions to prepare for a changing climate
- Learning more about green infrastructure

Today's Key Takeaways and Goals

- **1. Understand** the projected climate future for your community or district
- **2. Recognize** climate hazards and how they could change in the future
- 3. Identify & assess the risks to your community
- **4. Start to Plan** how to mitigate and adapt to the risks
- 5. Adopt a mentality of planning for the worst while hoping for the best

CLIMATE ACTION PLANNING PROCESS



Climate Action Planning Process

MANITOBA CLIMATE RESILIENCE TRAINING

MANITOBA CLIMATE RESILIENCE TRAINING

CLIMATE ACTION PLANNING

STAGE 1: GETTING STARTED

Climate Action Plan Stage 1: Getting Started

Getting Started

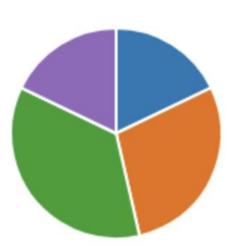
Stage '

Learning More About Climate Change

What We Heard

• We asked: How would you describe the average citizen's attitudes towards the changing climate in your municipality or watershed district?

- 7% The average citizen doesn't believe the climate is changing
- 25% The average citizen is indifferent to the changing climate
- **72%** The average citizen is somewhat concerned about the changing climate
 - 0% The average citizen is very concerned about the changing climate
 - 3% I don't know



What We Heard

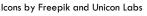
• We asked: How would you rate your personal confidence in discussing climate change with the average citizen in your municipality or watershed district?

- 17% I do not feel confident at all discussing climate change
- 29% I can't discuss it, but I can direct people to resources
- 36% I can discuss it at a surface level and provide resources
 - 0% I can discuss several aspects of climate change in depth
 - 18% I feel complete confidence discussing climate change

Climate Change Basics: Weather vs Climate

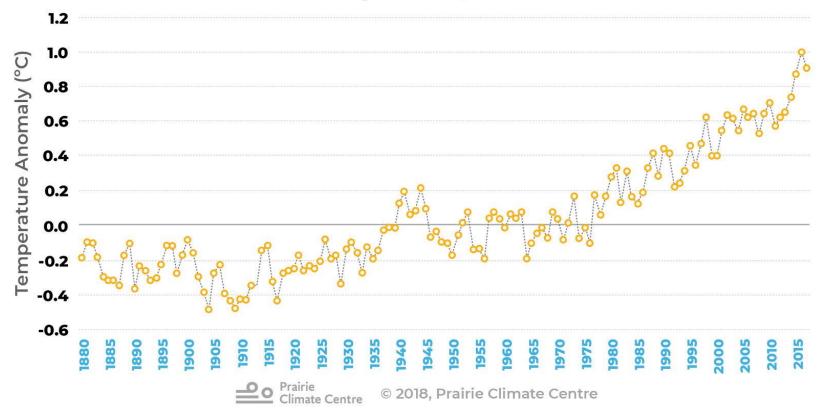
Weather

- Changes by the hour, day, or week
- Readily observable


"Climate is what we expect, weather is what we get" – Mark Twain

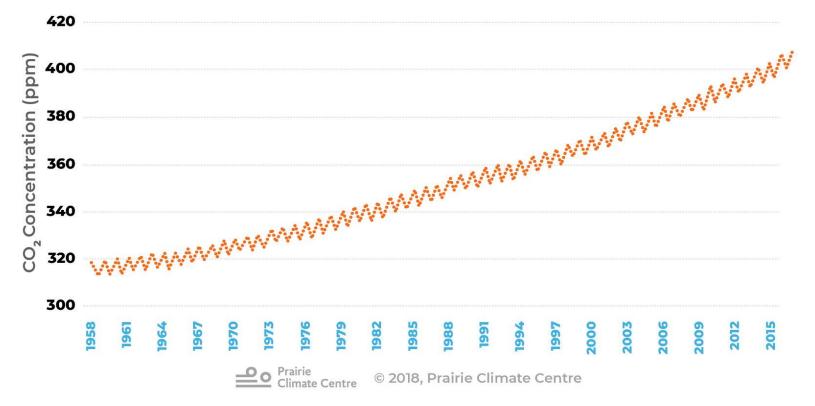
Climate

- Changes with the seasons
- A generalization of regional weather over time



Climate Change Basics: Earth's Temperature Over Time

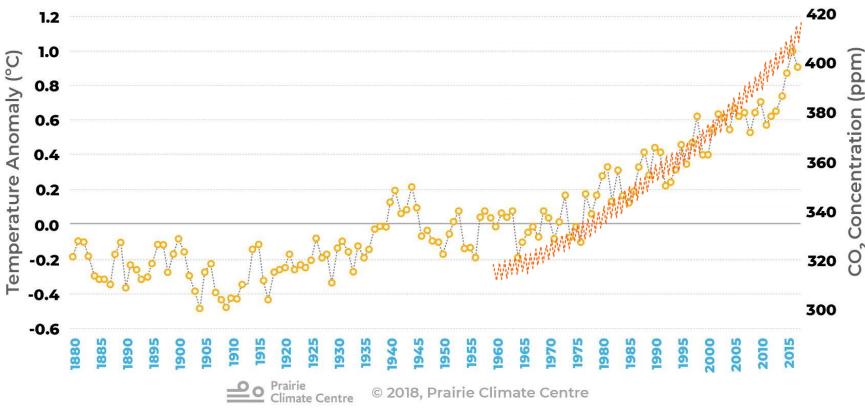
Global Temperature, 1880 to 2017



Source: https://climateatlas.ca/climate-change-basics

Climate Change Basics: Carbon Dioxide Levels Over Time

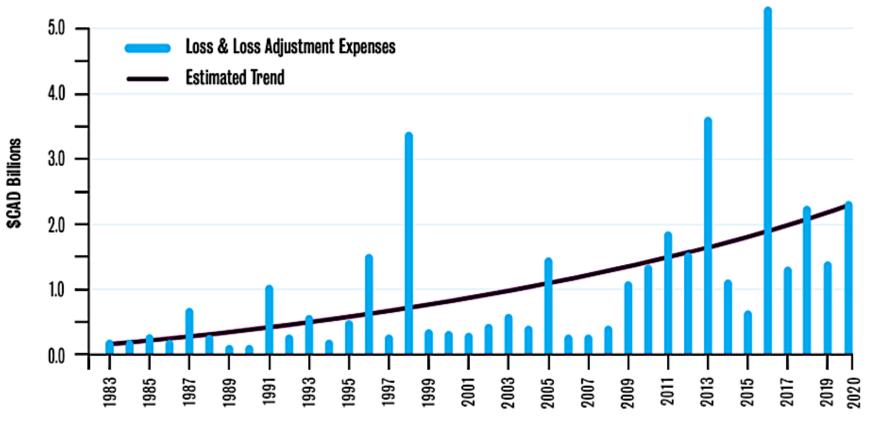
Carbon Dioxide Concentration, 1958 to 2018



Source: https://climateatlas.ca/climate-change-basics

Climate Change Basics: Temperature & CO2 Compared

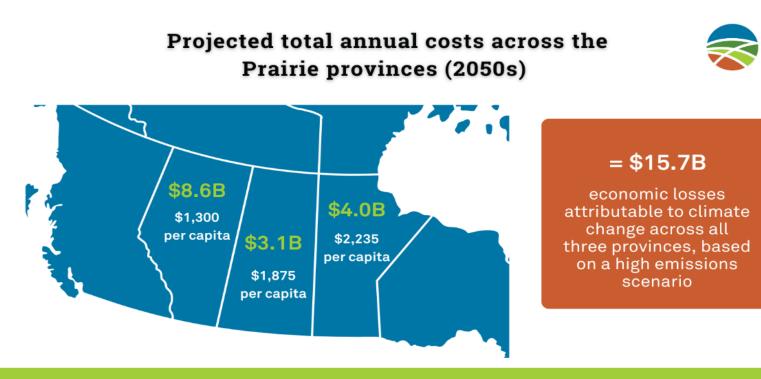
Global Temperature, 1880 to 2017


Source: https://climateatlas.ca/climate-change-basics

MANITOBA CLIMATE RESILIENCE TRAINING

Private Insured Catastrophic Losses in Canada

Source: Insurance Bureau of Canada / Intact Centre for Climate Adaptation



The Costs of Climate Change

RESILIENCE TRAINING

Read the full report: climatewest.ca/publications

ABOUT ✓ GET STARTED SECTORS RESOURCES ✓ SERVICES TRAINING ✓ EVENTS HELP DESK

CLIMATE CHANGE 101

ClimateWest

A climate change primer course for professionals and practitioners in Manitoba to better understand the causes, future projections, and effects of climate change in the Canadian context. This course serves as a foundational primer for the rest of the MCRT training to be undertaken by select audiences.

RISK ASSESSMENT: CORE PRINCIPLES

Climate Change Risk Assessment: Core Principles

This foundational module provides a foundation of core climate change risk assessment principles and approaches for all BRACE sector audiences. It explores core concepts such as hazard identification, vulnerability assessment, risk assessment and how to use a CCRA process to identify, assess, prioritize climate impacts to inform climate adaptation planning.

Manitobo

MANITOBA CLIMATE RESILIENCE TRAINING

MCRT Foundational Training Modules:

https://climatewest.ca/mcrt-foundation-modules

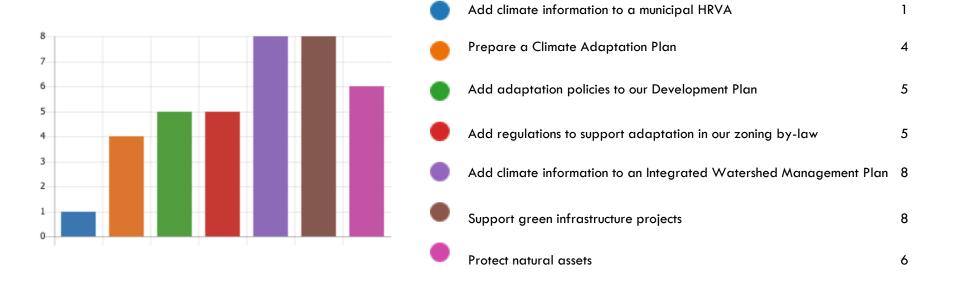
Start here:

Climate Action Plan Stage 1: Getting Started

Getting Started

Stage '

Determining How to Use the Information

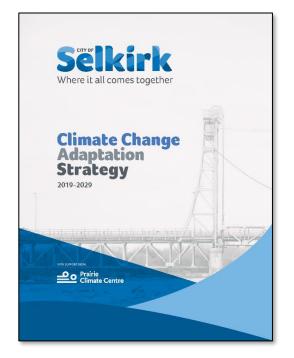


What We Heard

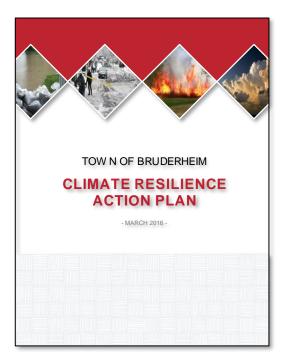
• We asked: What actions would you like to see taken in your community to adapt to a changing climate?

Watershed Workshop Applications

MANITOBA CLIMATE RESILIENCE TRAINING


You can apply today's content to:

- Your next Integrated Watershed Management Plan (left)
- A standalone Climate Change Adaptation Strategy or Action Plan (right)



Determine scale and scope: Climate Action Plan

City of Selkirk, MB Population: 10,504

Town of Bruderheim, AB Population: 1,308

MANITOBA CLIMATE **RESILIENCE TRAINING**

CLIMATE ACTION PLANNING

STAGE 2: ASSESSING CLIMATE RISKS

STAGE 1 Initiate the process and understand the context

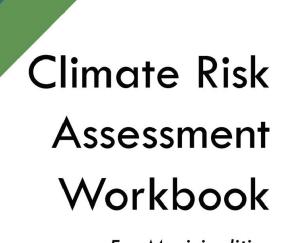
Stakeholder engagement

STAGE 3

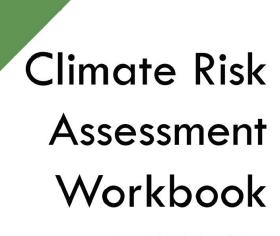
Select adaptation actions, then implement; monitor, evaluate, and learn

STAGE 2

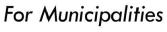
Assess and prioritize climate risks


A Note of Caution

 While our goal is to help you walk through the steps of a vulnerability and risk assessment, in practice this process takes much longer and requires a team and expert opinion to properly complete



Municipality or District: _____


Email Address: _____

Municipality or District:

Email Address:

Fill this in!

Climate Action Plan Stage 2: Assessing Current and Future Climate Risks

Assessing Current and Future Climate Risks

Stage 2 Objectives:

- To understand the degree to which a changing climate will impact important aspects of your district
- To help your team prioritize climate change risks to prepare for through adaptation

Step 1: Climate Hazard Assessment

The goal of this step is to:

- Identify the climate hazards that already affect or will affect your community; and
- Understand how the climate hazards are predicted to change.

🐞 CBC

'We are short on water': Morden seeks additional source as droughts become more frequent

A southern Manitoba city that recently declared itself to be in a moderate drought stage after a drier than normal winter says it needs more...

2 weeks ago

Abnormally mild January full of joy, grief for Manitobans as winter on track to break record

Unexpected warm winter weather in the province has been enjoyable for some people, but not everyone is a fan of the mild temperatures.

1 month ago

Global News

Manitoba hail storm decimates crops, hail insurance claims pour in

Watch Manitoba hail storm decimates crops, hail insurance claims pour in Video Online,

on GlobalNews.ca.

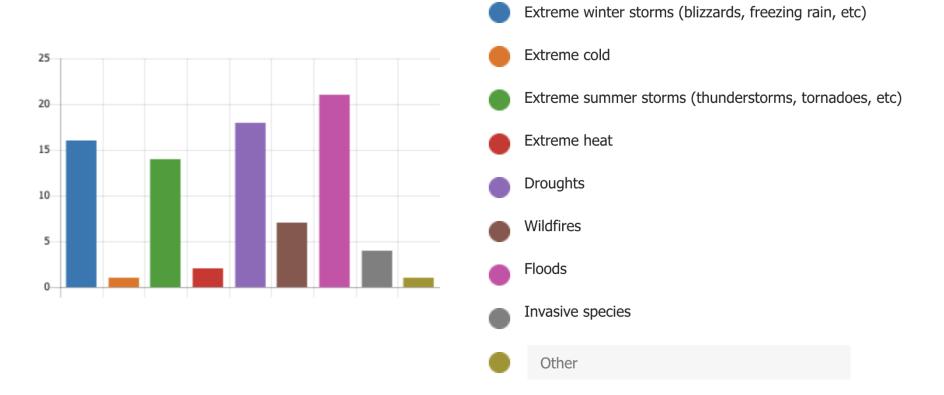
Aug 29, 2023

Examples of Climate-Related Hazards Affecting Manitoba in Recent Years

Wildfires continue to cause air quality issues in northern Manitoba

Kayla Rosen CTVNewsWinnipeg.ca Published July 22, 2022 8:20 a.m. CDT

Manitoba floods continue to wreak havoc on communities across the province


By Sam Thompson • Global News Posted May 4, 2022 9:30 am · Updated May 4, 2022 9:31 pm

What We Heard

 We asked: What climate hazards do you think pose the greatest risk to your municipality or district in the future?

Group Discussion:

- What climate-related hazards have impacted your community in the past?
 - Examples:
 - Annual heatwaves
 - Red River Flood of 1997
 - Pukatawagan Wildfire of 2022

Task 1.1: Develop a list of climate-related hazards

Examples of Climate-Related Hazards

Task 1.1: Develop a list of climate-related hazards

• Consider the attributes of these hazards and write your answers in **Box 1.1**.

Climate Hazard	When was it?	What was experienced?	How long did it last?
Heatwave	wave July 2022, August 2023 Day tem Night ter		3-4 days at a time

Box 1.1: Identify past climate hazards in your community.

Task 1.2: Identify how climate hazards are predicted to change

- Let's review your area's climate profiles
- See more at climateatlas.ca

and the second se		And a second second			/		
Virden				1			
summer of the local division of the second se	-		1	71			
MANITOE	3A						
Virden and Climate Change	and the second second	Contraction of the second	and the second second	- Contraction			
The climate determines almost everything about h build, and live in our communities. As the climat	te continues to	High-Carbo				and the second	
change, the safety and prosperity of our communi risk. Climate change is a challenge that require	es us to work	Climate Cha	ange Pro				
together, locally, nationally, and globally. W know-how, political will, targeted investments,	and collective	Change	Recent Past	Toth percentile	2051-2080 Mean	90th percentile High	
commitment, we can mitigate the severity of clima build resilience to its hazards and impacts. Climate Change and Health	ate cnange and	Typical hottest summer day	34.6 °C	35.8 °C	39.29 °C	43.8 °C	1 1
High temperatures can be hazardous, especially f the chronically III, and those without air conditio prolonged heat can also impact air quality, facilitat harmful diseases, inhibit outdoor activities, and ca	ning. High and te the spread of	Typical coldest winter day	-36.7 °C	-34.3 °C	-28.8 °C	-23.5 °C	
anxiety. We can adapt with measures such as shade roofs, and supports for those who need help durin	ed areas, green	Number of +30 °C days per year	15	26	53	78	
Climate Change and Extreme Weather A warmer climate increases the chance and ser extreme weather, including high winds, flash lightning, tornadoes, drought, and wildfires. Com	n floods, hail, Imunities must	Spring precipitation	101 mm	61 mm	120 mm	192 mm	1
improve their planning and engineering preparedness, and water management to build res Climate Change and Infrastructure		Summer precipitation	198 mm	101 mm	191 mm	302 mm	1 1 1
Climate change threatens the integrity of infrastr roads, bridges, water supply, and telecommunica which has not been built to withstand currer extremes. Emergency preparedness, planning, an	ations, most of nt and future	Number of below-zero days per year	194	134	156	177	
practices for retrofits and new development that climate reality into account can increase our ada Acting now will reduce economic risk and save increasing long-term damages and costs associate	aptive capacity. on the rapidly	Number of +20 °C nights per year	0	1	13	28	
change.		*See back page for d	etails and so	urce of climat	e model data		
	*						
Wetter springs, drier late summers	Much wa winte			Many mo day			

"High Carbon" Projections

MANITOBA CLIMATE RESILIENCE TRAINING

Ch	ange	Recent Past	10th percentile	2051-2080 Mean	90th percentile	Direction of change	
	Typical hottest summer day	34.6 °C	35.8 °C	39.29 °C	43.8 °C	1	
Ĵ	Typical coldest winter day	-36.7 °C	-34.3 °C	-28.8 °C	-23.5 °C	1	
	Number of +30 °C days per year	15	26	53	78		
•**	Spring precipitation	101 mm	61 mm	120 mm	192 mm	1	
٢	Summer precipitation	198 mm	101 mm	191 mm	302 mm	1	
l	Number of below-zero days per year	194	134	156	177	1	
)	Number of +20 °C nights per year	0	1	13	28		

Task 1.2: Identify how climate hazards are predicted to change

• Use the Climate Atlas of Canada to fill in the blanks in **Box 1.2**.

Variable	Recent Past: 1976-2005	Near-term Projection: 2021-2050	Long-term Projection: 2051-2080	Change (+/-)
Very Hot Days (+30°C)	days	days	days	days
Very Cold Days (-30°C)	days	days	days	days
Annual Mean Temperature	°C	°C	°C	°C
Mean Spring Precipitation	mm	mm	mm	%
Frost-Free Season	days	days	days	days

Round Table Questions

 Did anything surprise you from looking at the data?

 Are there hazards or opportunities related to climate change that you hadn't thought of before?

Future Climate Hazards

• Identify four top future climate hazards in your area in **Box 1.3**.

#	Climate Hazards
0	Example: Heatwaves
1	
2	
3	
4	

Task 1.2: Identify how climate hazards are predicted to change

- Now, find the Climate Impact Assessment Sheets in your workbook.
- Fill out the **blue boxes** for each of the 4 top climate hazards.

Climate Hazard: Heatwave

Task 1.2: Identify how climate hazards are predicted to change

- How are these hazards projected to change in the future from how they were in the past?
- On your Climate Impact Assessment Sheets, fill out the yellow boxes for each of the 4 top climate hazards.

Climate Hazard:	Heatwave				
How is the Hazard Projected to Change in the Future?					
 An average of 2.3 more heatwaves each year 					
 The average heatwave is 1.8 days longer. 					
 The average summer temperature is 2.1°C warmer. 					
As summer temperatures and the number of days above +30°C increase, future heatwaves may be hotter, more frequent, and last longer.					

Climate Action Plan Stage 2: Assessing Current and Future Climate Risks

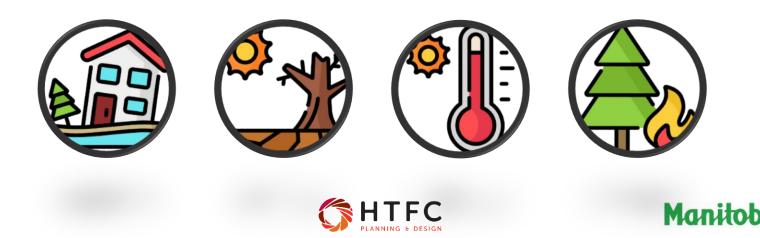
The goal of this step is to:

- Consider impacts of the identified climate hazards
- Explore how these impacts might be felt in the future
- Understand the consequences for your community

Task 2.1: Develop an inventory of climate change hazards and impacts

- For each climate hazard, think of general **impacts** that may occur as a result. Look at climate profile for ideas.
- On your Climate Impact Assessment Sheets, fill out the green boxes. Consider:
 - What are the general impacts of this hazard?

Climate Hazard	What Are the Impacts of This Hazard?
Example: Heatwave	-More hot days and night -Reduced water supply -Loss of soil moisture -Increased risk of wildfires -Amplification of drought conditions



 For each climate hazard, imagine a worstcase scenario event that could occur in your municipality or district between now and 2050.

Task 2.2: Identify the climate risks to your community

- A 1-in-300-year flood
- A prolonged drought

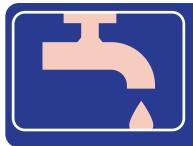
- **EXAMPLES**

- Extended summer heat wave
- Extreme rainfall event or summer storm
- Major snowstorm or ice storm

 Starting with Community & People, write down a bullet point list of potential consequences that could occur in a worstcase scenario event. Fill out the first row under the purple box for each hazard.

Community & people

Fatalities, injuries, medical treatment, hospitalization, temporary or permanent displacement, mental health and emotional well-being



• Write down a bullet point list of potential consequences that could occur in a **worst-case scenario** event.

Critical services

Loss of services such as transportation, water, electricity, etc.

• Write down a bullet point list of potential consequences that could occur in a **worst-case scenario** event.

Buildings and infrastructure

Damage to buildings, equipment, vehicles, infrastructure.

• Write down a bullet point list of potential consequences that could occur in a **worst-case scenario** event.

Local economy

Disruption or loss of ability to produce, consume, and trade goods and services, and to generate income supporting livelihoods

• Write down a bullet point list of potential consequences that could occur in a **worst- case scenario** event.

Natural environment

Impacts to land, water, air, plants, and animals, and the provision of ecosystem services

Climate Action Plan Stage 2: Assessing Current and Future Climate Risks

The goal of this step is to:

- Understand how susceptible your community is to each of the impacts and consequences you have previously identified
- Determine priorities for the adaptation planning phase and consider solutions

Severity of Identified Risks

- Return to your Climate Impact Assessment.
- For each consequence you have identified, assign a level of anticipated severity were that consequence to occur.
- Use the numbers 1 5 (with 1 being lowest).

	What Consequences Might Occur in a Worst-Case Scenario?	Severity
	- Seniors/vulnerable community members suffer heat stroke	4
Community & People	- Food security threatened by crop loss - Cancelation of outdoor events, sports, and gatherings	5 1

Severity of Identified Risks

Severity Level Description Impact may be observed but does not change day-to-day life • No deaths, injuries, or effects on health and safety ٠ Insignificant No impact to the economy, environment, property, or services. No deaths or injuries, minor short-term effects on health and safety • Very minimal impact on local economy . 2 Insignificant environmental disruption or damage . Minor Slight damage to property and infrastructure, very short-term service interruptions, or negligible costs • No liabilities or significant extra costs ٠ Few injuries, or modest temporary impact on quality of life ٠ Interruptions to business revenue and employment for less than one week • 3 Isolated and reversible damage to wildlife, habitat, and/or ecosystem **Moderate** Potential damage to property/infrastructure, short-term service interruptions, localized evacuations Modest to higher cost events ٠ High possibility of injuries or chronic health issues or major temporary impact on quality of life • Interruptions to business revenue and employment for more than one week ٠ 4 Irreversible damage to wildlife, habitat, or ecosystems Major Damage to property and infrastructure, longer-term service interruptions, major delays, and evacuations Community complaints; dissatisfaction or anger with situation; legal liabilities and lawsuits possible ٠ Many serious injuries or illnesses, fatalities, and/or long-term impacts on quality of life ٠ Interruptions to businesses and revenue for more than a month, extending to entire sectors at a major economic cost ٠ Widespread and irreversible damage to wildlife, habitat, and ecosystems **Catastrophic** Widespread damage to property and infrastructure, long-term interruption of services, widespread evacuations Major costs to municipality, high possibility for legal liabilities and lawsuits ٠

Likelihood of identified risks

Consider how likely this consequence is to occur.

Likelihood level	Definition
1 - Very Unlikely	This has never happened in our area, or it happened a long time ago. / This is not likely to happen until far in the future.
2 - Unlikely	This may have occurred in our area in the past, but it was at least 20 years ago. / This could happen 20 years from now.
3 - Possible This has occurred in our area once in the past 20 years. / This might occur once in the next 20 years.	
4 - Likely This happened in our area a few times in the past 20 years. / This might occur several times in the next 20 years.	
5 - Very Likely This has occurred in our area yearly or every other year, duri the past 20 years. / This might occur every other year or so.	

Prioritizing Climate Risks

5 Medium-High Medium Medium-High High Very Priority Priority Priority Likely 4 um-Hiah Likely rric ty Priority Priority Priority 3 Medium-High Medium-Low Medium-Low Medium Mediu -High Possible Priority Priority Priority Pric ty Priority Likelihood 2 Low Medium-Low Medium-Low Mec Jm Medium-High Pric Priority Priority Priority ty Priority Unlikely 1 Low Low Medium-Low Mediu -Low Medium Verv Pric Priority Priority Priority Priority Unlikely Risk 2 3 5 1 Assessment Insignificant Minor Moderate Major Catastrophic Matrix

Severity of Consequences

Plot each consequence you identified in Box
2.2 onto the blank Matrix in Box 3.1.

Activity:

Write each consequence on a sticky note

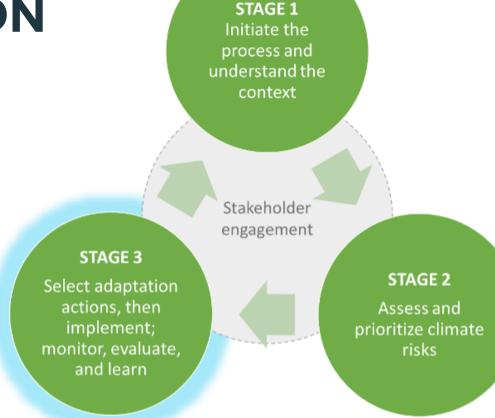
 Put sticky notes up on wall posters according to the identified climate hazard

Likelihood

Prioritizing Climate Risks

MANITOBA CLIMATE RESILIENCE TRAINING

Risk Assessment Matrix	1 Insignificant	2 Minor	3 Moderate	4 Major	5 Catastrophic
1 Very Unlikely	Low Priority	Low Priority	Medium-Low Priority	Medium-Low Priority	Medium Priority
2	Low	Medium-Low	Medium-Low	Medium	Medium-High
Unlikely	Priority	Priority	Priority	Priority	Priority
3	Medium-Low	Medium-Low	Medium	Medium-High	Medium-High
Possible	Priority	Priority	Priority	Priority	Priority
4	Medium-Low	Medium	Medium-High	Medium-High	High
Likely	Priority	Priority	Priority	Priority	Priority
5 Very Likely	Medium Priority	Medium-High Priority	Medium-High Priority	High Priority	High Priority


Severity of Consequences

MANITOBA CLIMATE RESILIENCE TRAINING

CLIMATE ACTION PLANNING

STAGE 3: ACTION PLANNING

Climate Action Plan Stage 3: Action Planning

Climate Action Plan Stage 3: Action Planning

Mitigation vs Adaptation

MANITOBA CLIMATE RESILIENCE TRAINING

- Mitigation –
 Efforts to slow the process of a changing climate
- Adaptation –
 Response to a new climate reality

"**Mitigation** will help avoid the unmanageable.

Adaptation is essential to manage the unavoidable." - All One Sky

Mitigation vs Adaptation

Mitigation Action to reduce emissions that cause climate change

Adaptation

Action to manage the risks of climate change impacts

HTFC PLANNING & DESIGN Source: City of Calgary

Strategies for Climate Resilience

1. Reservoirs and Sinks

Ways to increase storage capacity – heat, water, carbon

2. Redundancy – "Belt and Suspenders"

Multiple pathways to success

3. Decentralized / Distributed Networks

Reduce reliance on vulnerable hard infrastructure

4. Capitalize on Positive Feedback Loops

Natural systems are often self reinforcing, multiply benefits

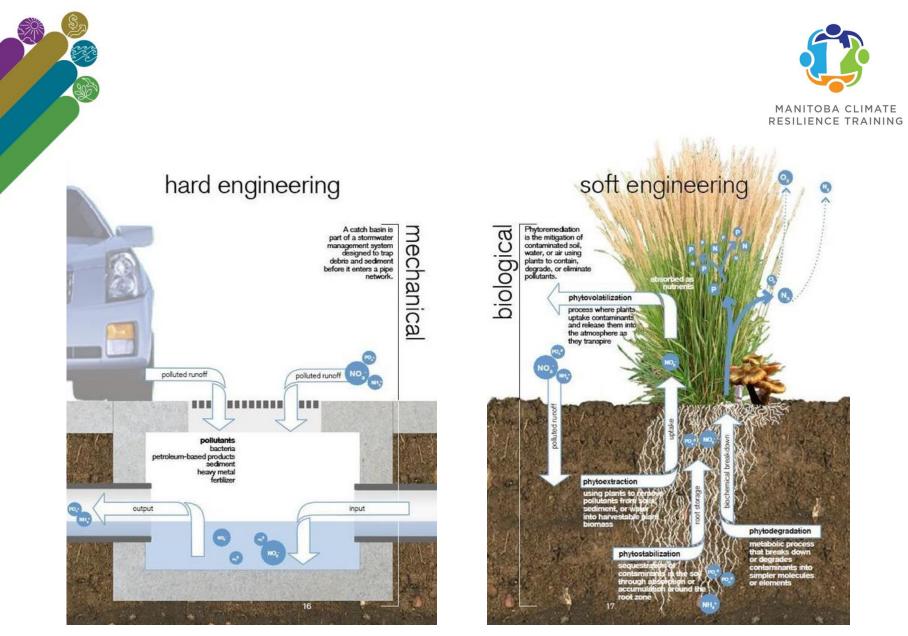
5. Monitor and Adjust

The most important feedback loop

Green Infrastructure

Natural Assets

Wetlands Forests Parks Lakes/rivers/creeks Fields Soil


Hybrid/Enhanced Assets

Permeable pavers Green roofs Bioswales Rain gardens Stormwater retention ponds

Graphic reproduced from Municipal Natural Asset Initiative (MNAI)

- 1. Functional Tree Planting
- Urban Forest
- Shelterbelts
- Soil Bioengineering

Adaptation: Types of Green Infrastructure

2. Living Architecture

- Green Roofs
- Green Walls

Manitoba Hydro Building, Winnipeg

Bertha St, Winnipeg

Adaptation: Types of Green Infrastructure

3. Bioretention + Infiltration

- Bioswales
- Rain Gardens
- Constructed Wetlands
- Permeable Paving

Adaptation: Types of Green Infrastructure

- Rainwater Collection
- Dew and Fog Harvesting

5. Productive Landscapes

- Urban Agriculture
- Beekeeping

Scalability

Regional

Protect diverse ecological and social functions and connect these areas to community-scale open spaces e.g. Red River Floodway

Community

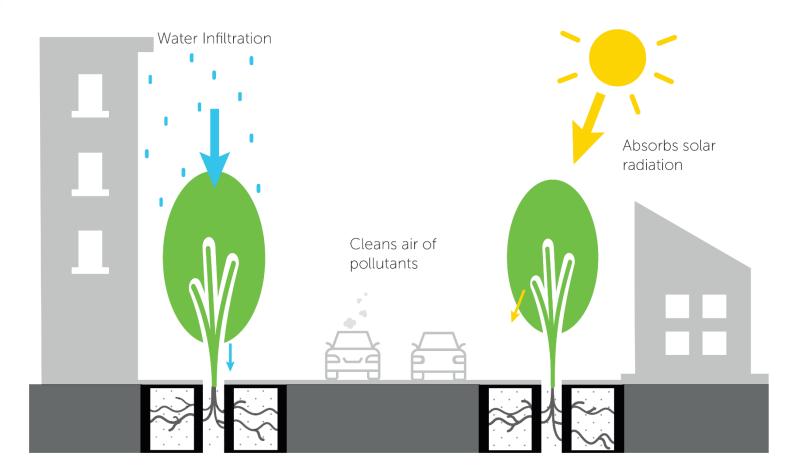
Encourage natural infrastructure that provides multiple benefits in parks and city-scale open spaces

e.g., Bishop Grandin Greenway

Site

Incorporate natural infrastructure practices in rights of way, building sites, homes

e.g., Portage la Prairie Saskatchewan Avenue bioswales



Adaptation: Functional Tree Planting

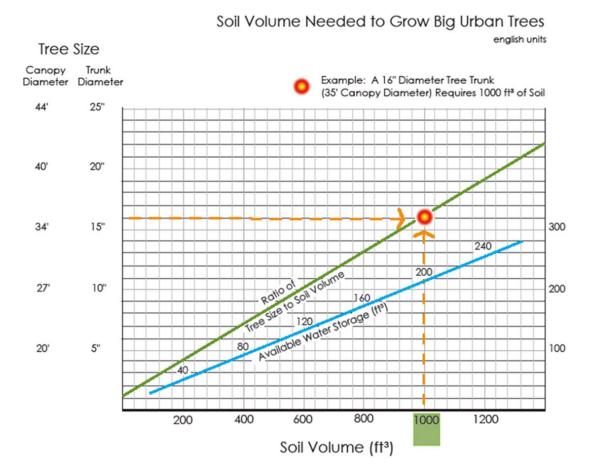
Environmental Benefits

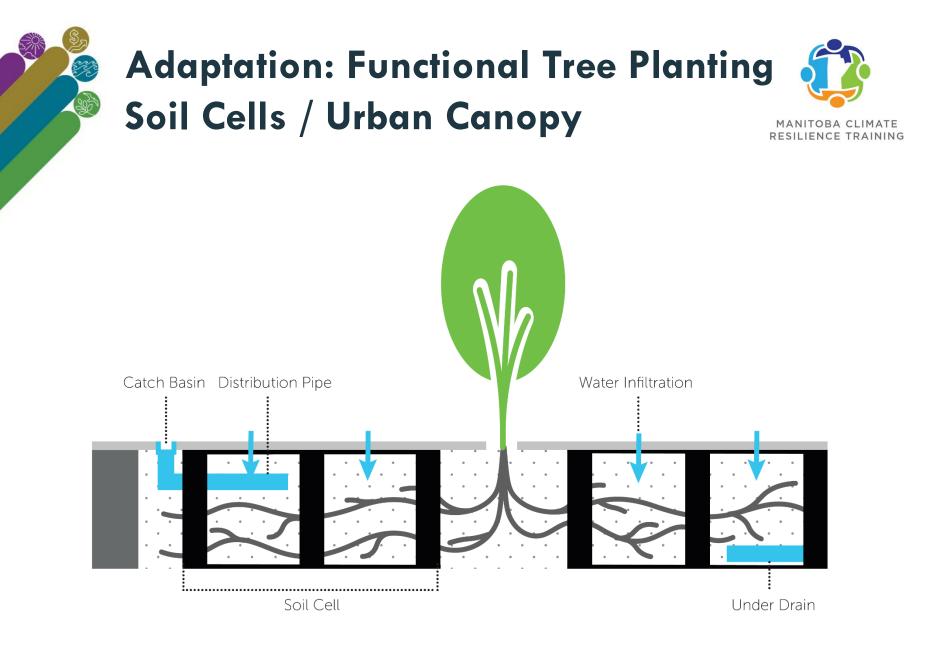
- Less runoff in the pipes (30% absorbed by leaves, 30% transpired)
- Reduced Heat Island Effects (temperature differential of 5 to 15 degrees under a tree canopy)
- Prolonged pavement life with less expansion/contraction
- Soil conservation
- Air quality (harmful gases converted to oxygen)
- Habitat and biodiversity

Adaptation: Functional Tree Planting

Socio-Economic Benefits of Trees

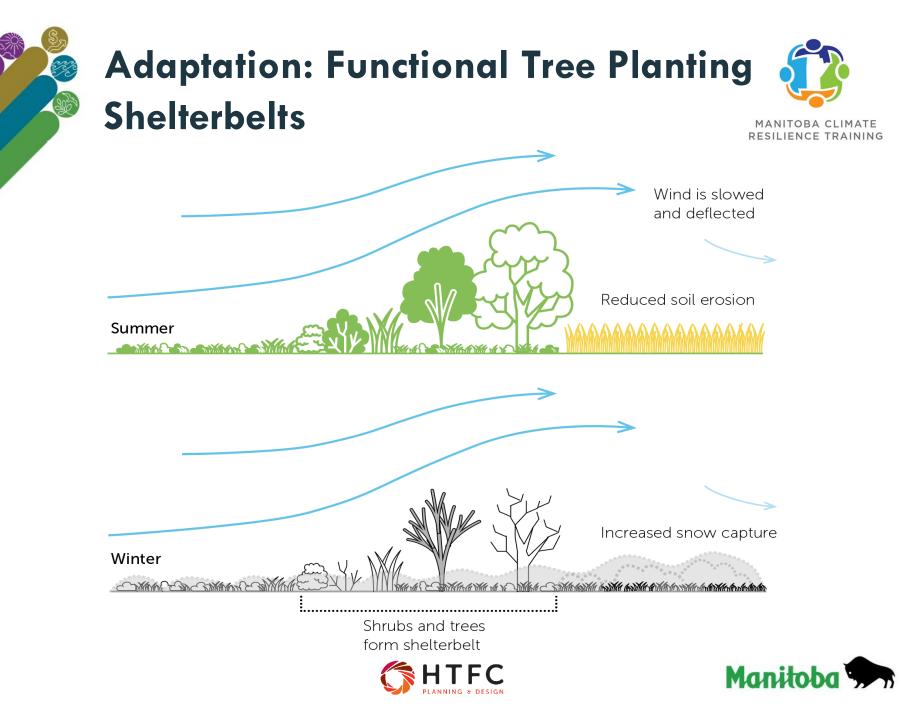
- Safer sidewalks (physical and psychological traffic barrier)
- Boulevards/growing spaces make room for amenities
- Treed streets attract 12% more pedestrians on average, increasing business, vibrancy, and sense of security.
- Mental and physical health
- Increased Property Value
- Aesthetic appeal




Adaptation: Functional Tree Planting

Adaptation: Functional Tree Planting Soil Cells / Urban Canopy

MANITOBA CLIMATE RESILIENCE TRAINING



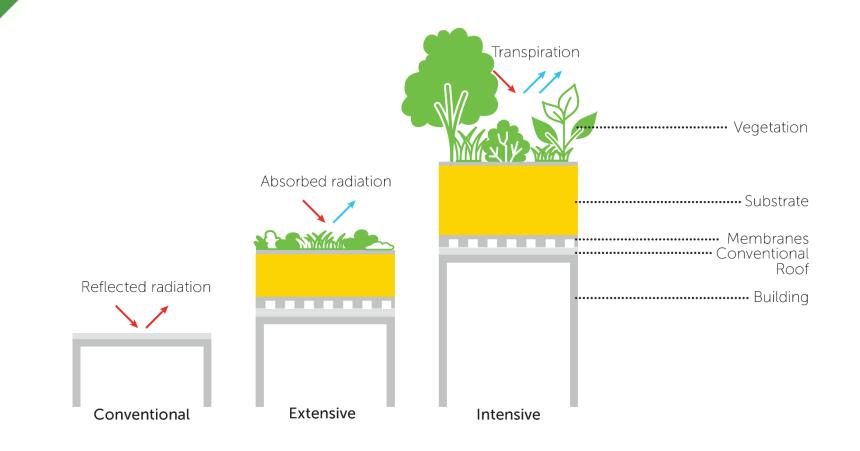
John Hirsch Place, Winnipeg

Adaptation: Functional Tree Planting Shelterbelts

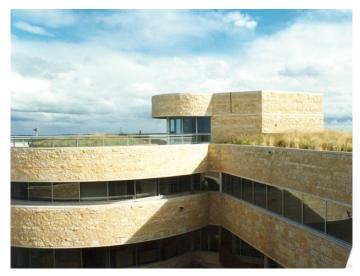
Manitoba Habitat Heritage Corporation Eco-Buffer Project near Elie, MB

Adaptation: Functional Tree Planting Shelterbelts

MANITOBA CLIMATE RESILIENCE TRAINING



Manitoba Habitat Heritage Corporation Eco-Buffer Project near Elie, MB



CMHR, Winnipeg

Bird's Hill Park

Ducks Unlimited Headquarters, Oak Hammock Marsh

To a roofer, green roofs:

- Add weight
- Add cost
- Add complexity
- Hold water on roof
- Restrict access for repairs
- Restrict ability to trace leaks

To a grower, green roofs:

- Expose plants to hot, dry and windy extremes
- Limit installation access
- Limit soil depth
- Add cost
- Create unpredictable interactions with surrounding structures
- Limit access to monitor, maintain and enjoy

Private Benefits:

- Protect and prolong membrane life (up to twice the lifespan!)
- Potential to reduce costs and fees related to drainage
- Save on heating and cooling
- Sound attenuation
- May improve public acceptance
- Amenity space & aesthetics
- Option of food production

Public Benefits:

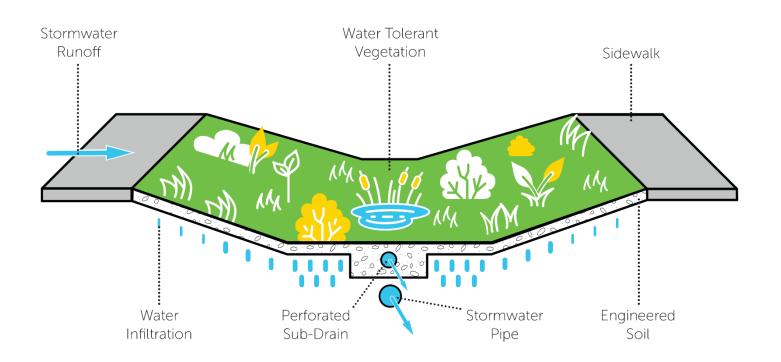
- Stormwater treatment and detention
- Health and welfare
- Temperature regulation in building and surroundings
- Produce oxygen and filter particulate from air
- Aesthetics & recreation
- Habitat & biodiversity

MANITOBA CLIMATE RESILIENCE TRAINING

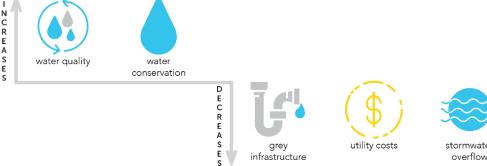
70% average runoff volume reduction 6 - 14% potential heating load reduction

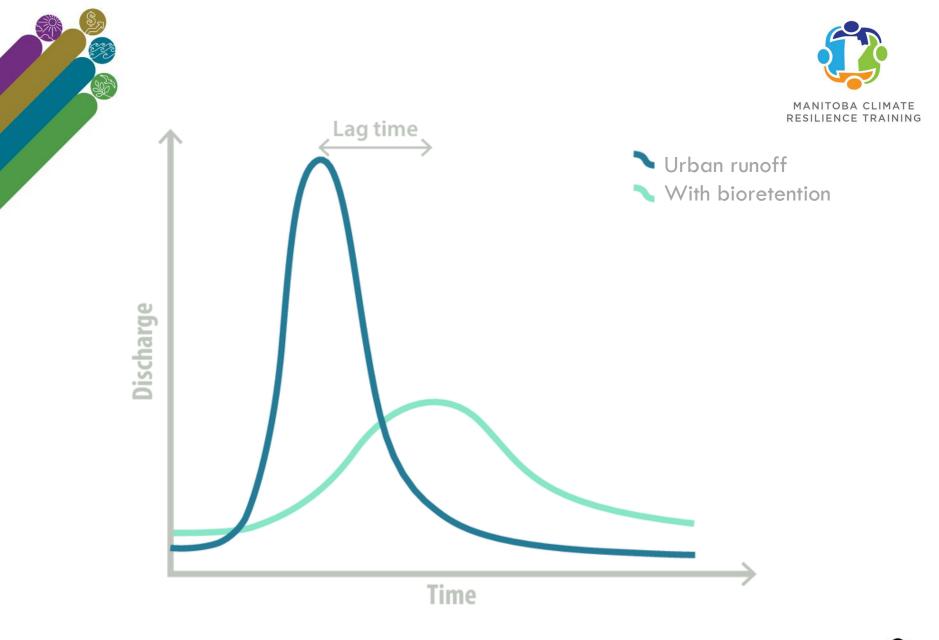
0.5 -2.0°

ambient air temperature reduction with widespread implementation of green roofs


100%

increased life span of roofing membrane




Benefits of Bioretention:

- Reduces Stormwater Runoff
- Improves Water Quality
- Reduces Atmospheric CO₂
- Increases Groundwater Recharge
- Improves Air Quality
- Reduces Urban Heat Island
- Improves Community Livability
- Improves Habitat

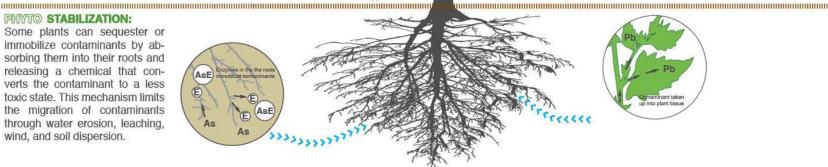
PHYTO VOLATILIZATION:

Some plants take up volatile contaminants and release them into the atmosphere through transpiration. The contaminant is transformed or degraded within the plant to create a less toxic substance before and then released into the air.

PHIYTO DEGRADATION:

Plants take up and break down contaminants through the release of enzymes and metabolic processes such as photosynthetic oxidation/reduction. In this process organic pollutants are degraded and incorporated into the plant or broken down in the soil.

PHYTO EXTRACTION:

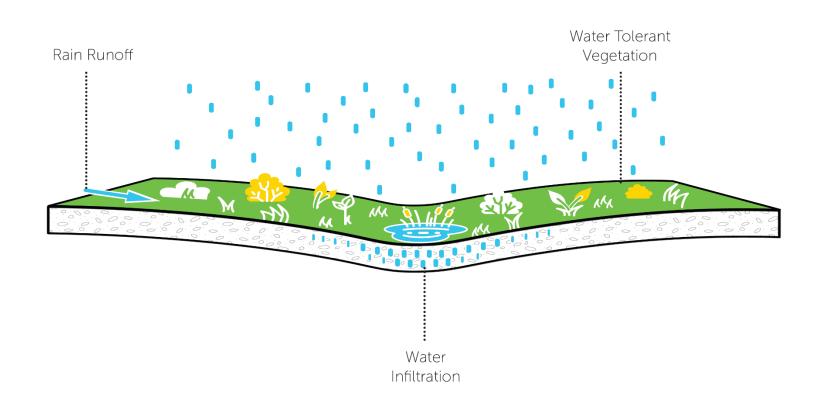

Enzymes fragments contaminant and

produces new plant fiber

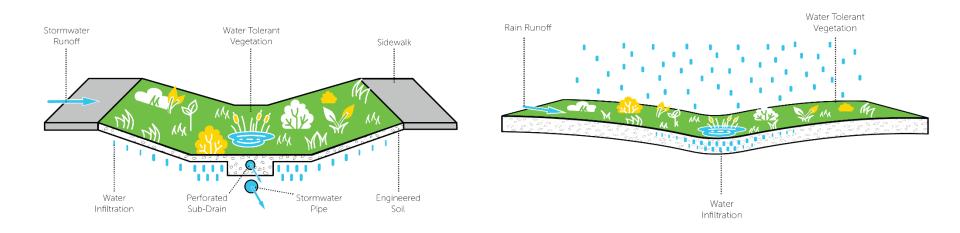
Plants take up contaminants mostly metals, metaloids and radionucleids- with their roots and accumulate them in large quantities within their stems and leaves. These plants have to be harvested and disposed as special waste.

PHYTO STABILIZATION:

Some plants can sequester or immobilize contaminants by absorbing them into their roots and releasing a chemical that converts the contaminant to a less toxic state. This mechanism limits the migration of contaminants through water erosion, leaching, wind, and soil dispersion.



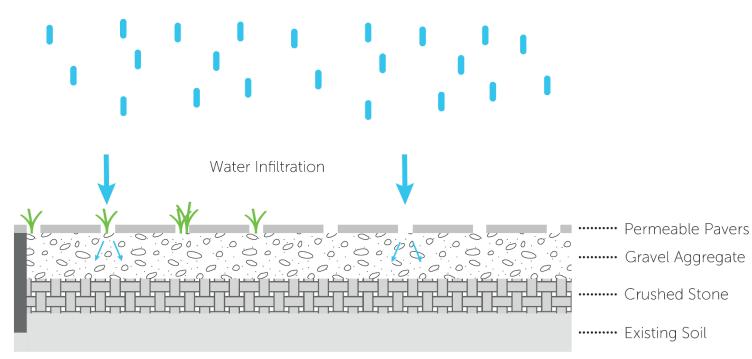
Adaptation: Bioretention Rain Gardens



Bioswale vs. Rain Garden What's the difference?

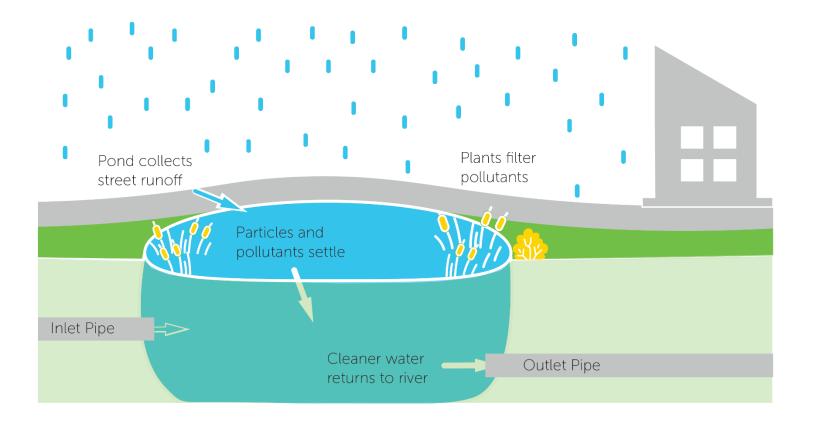
MANITOBA CLIMATE **RESILIENCE TRAINING**

Saskatchewan Ave Bioswale, Portage La Prairie



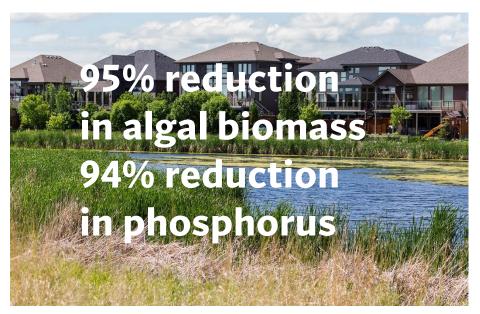
93-100% Runoff volume reduction for rainfall events up to 25mm (~90% of all events) 80% average total runoff volume reduction 66-95% peak flow reduction for events larger than the 2year (33 mm) equivalent storm no provide a 88% total suspended solids removed 42% AND DRAINAGE SEWER PIPE cost reduction over life cycle

Saskatchewan Ave Bioswale, Portage La Prairie



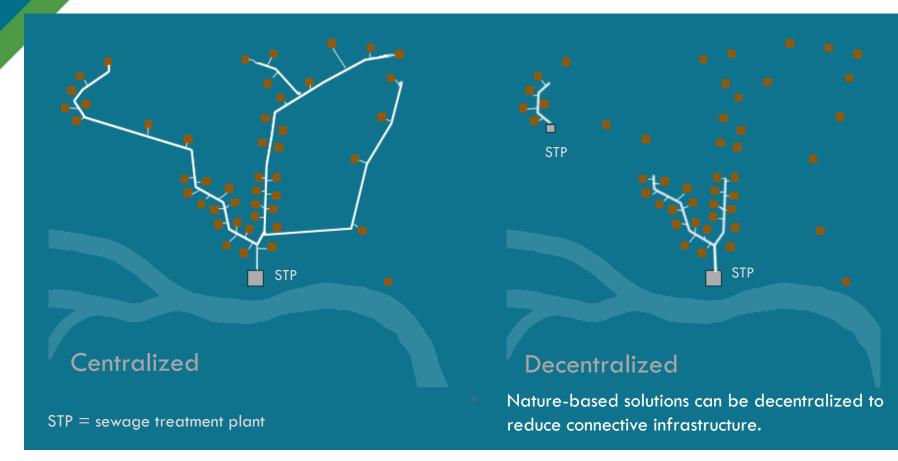
Older style retention pond

Royalwood Housing Development, Winnipeg



Older style retention pond

Royalwood Housing Development, Winnipeg



Decentralized Network



Flooding:

- Designate / zone flood-prone areas for recreational use instead of residential, commercial, etc.
- Adopt higher flood protection standards for developments (beyond 1-in-100 year levels).
- Include policies to preserve wetlands.

Drought & Extreme Weather:

• Encourage or require development to include green infrastructure that retains water, controls water flow, mitigates flash floods, and provides resilience from these events.

Warming Summers & Winters

- Prepare for increased housing demand in climate-resilient communities and population decline in areas that are at risk.
- Changes to crops grown may affect land use demands (e.g. viability to grow specialty crops on smaller parcels of land, etc.)

Icon by Freepik

Wildfires

- Include policies in Development Plans to locate development away from areas of high forest fire danger
- Ensure new developments account for fire risk
- Encourage resilient design through site layout and fire-resistant landscaping

Icon by Freepik

MANITOBA CLIMATE RESILIENCE TRAINING

Climate Hazard:		
Highest Priority Consequences	Potential Mitigation & Adaptation Actions	
Example: People need to be evacuated due to wildfires	 Explore the creation of a firebreak around the community Take inventory of vulnerable buildings, like healthcare centres, nursing homes, and schools Plan evacuation routes and backup routes Educate citizens on ways to reduce the risk of wildfires Encourage citizens to make their own evacuation plan 	

• For every medium-high or high priority in the matrix, identify some potential mitigation and adaptation actions.

Round Table Question:

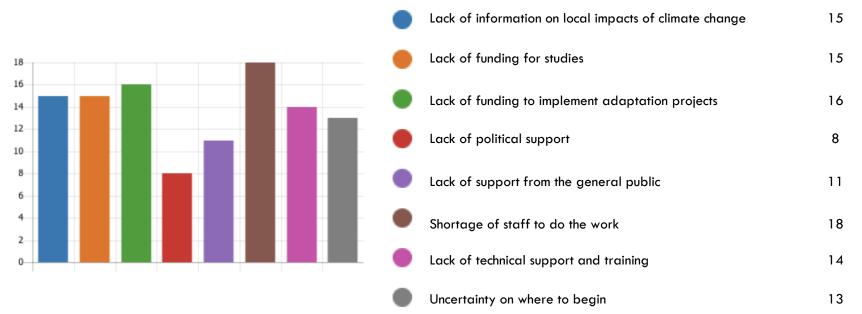
What kind of potential actions did you identify?

Climate Action Plan Steps

You may need to think about:

- Timing
- Funding
- Expertise

Icon by Freepik



What We Heard

• We asked: What barriers to adaptive action, if any, has your municipality or district encountered?

Federal Funding Opportunities

MANITOBA CLIMATE RESILIENCE TRAINING

Government Gouvernement	Français					
of Canada du Canada	Search ECCC Q					
MENU 🗸						
<u>Canada.ca</u> > <u>Environment and natural resources</u> > <u>Climate change</u> > <u>Canada's climate plan</u>	> <u>Adapting</u>					
Funding any automitics to support adaptation a						
Funding opportunities to support adaptation a	action					
Federal investments are key to supporting adaptation measures at the national, regional and local level. This page provides further details on funding opportunities for climate change adaptation by department, including a comprehensive list of adaptation programs.						
Environment and Climate Change Canada						
Climate Action Fund: provides up to \$3 million annually for projects that raise awareness and increase participation in						
climate change action across Canada. Selected projects focus especially on youth, s organizations, and small and medium businesses.	students, Indigenous Peoples and					
<u>EcoAction Community Funding Program</u> : provides funding to protect, rehabilitate, enhance and sustain the natural environment.						
<u>Nature Fund</u> : supports the protection of Canada's ecosystems, landscapes and bio fund is available to non-profit and Indigenous organizations, provinces and territo	5 5 1					

Go to: canada.ca/en/environment-climate-change/services/climate-change/adapting/funding.html

MANITOBA CLIMATE RESILIENCE TRAINING

– Conservation & Climate Fund

The Conservation and Climate Fund provides support to projects occurring in Manitoba that incorporate actions to address and adapt to climate change and protect the environment in alignment with the priorities and implementation of the Climate and Green Plan.

Projects will deliver on one or more of the following:

- · Reduce greenhouse gas emissions;
- · Address the effects of climate change, including measures to adapt to climate change;
- Promote sustainable development while ensuring natural resources are managed in a manner that ensures availability for future generations

The Fund is a project funder and it is not the intent to provide on-going operating or maintenance support to an organization.

As an initiative of the Manitoba Climate and Green Plan, the Fund supports a green and climate resilient province.

Who can apply?

Eligible applicants include:

- Incorporated non-profit organization
- · Academic and educational institution
- Manitoba Municipality
- Northern Affairs and Indigenous Community in Manitoba
- Business, including Social Enterprise Businesses

Organizations must be active and have established operations within Manitoba for at least one year before applying. Business must be registered with the Province of Manitoba.

Ineligible applicants include Individuals, Crown Corporations, Federal Government, Provincial Governments, and Watershed Districts.

CATEGO	ORY	SUB- CATEGORY	OUTCOMES	CROSS SECTOR FOCUS AREAS
		Clean Energy	• Foster more clean energy production (e.g. renewable or low carbon energy sources) and used in Manitoba	Clean technology pathways that fulfill market needs and provide job and economic stimulus.
Climate and	Sector Emissions Reductions	 Contribute to overall emissions reductions for Manitoba 	(e.g. Clean tech or clean energy investments and jobs created)	
	Green Technology	Innovation and Cleantech	 Promote growth in the clean technology sector 	Circular economy
	Green Infrastructure	Advance key infrastructure partnerships under the Climate and Green Plan (e.g. to municipalities, international experts and indigenous communities)	development that focuses on provincial industries and associated economic opportunities. (e.g. Redirect by-product streams into higher value added processing or	
		Agriculture and Land Use	Maintain and enhance healthy agro-ecosystems	reuse.) Municipal climate action
Water	Flood and Drought	 Contribute to effective forecasting, mitigation and response to flooding and drought Target clean water throughout Manitoba for drinking, habitat and economic development Projects to reach the carbon emissions reduction potential municipalities; and/u advance implement of the community's adaptation plans. 	projects to reach the carbon emissions reduction potential of municipalities; and/or to	
	Water Quality		of the community's adaptation plans. Advance innovative knowledge sharing of	
Nature and Resilient Landscapes	Park and Protected Areas	 Encourage a greater connection and enjoyment with nature and natural 	climate change sciences, which fosters sustainable action, for a prairie specific context.	
	Forestry and Natural Areas	tourism for Manitoba families • Promote healthy and		
		Conservation	productive forests and natural areas • Support Manitoba's active conservation efforts	

Other Funding Opportunities

HOME ABOUT US ¥ HUNTING ¥

PROGRAMS ¥

NEWS &

CONTACT US

DONATIONS ¥

FWEF ¥ THE TRUSTS *

THE CONSERVATION AND GROW TRUSTS

Go to: www.mhhc.mb.ca

Adaptation in Action Program

Go to: climatewest.ca/adaptation-in-action-program

Other Funding Opportunities

ClimateWest Forum: Building Climate Resilience

The 2nd annual ClimateWest Forum is set to take place on May 8-9, 2024 in Edmonton and online

Go to: climatewest.ca/2024-climatewest-forum/

Focus areas

HOME > PROGRAMS > PARTNERS FOR CLIMATE PROTECTION

Partners for Climate Protection

Join this national network of 400+ municipalities and learn how to reduce greenhouse gas emissions and act on climate change. Visit here: https://fcm.ca/en/programs/partners-climate-protection

COMPLETE EXIT SURVEY & HAND IN WORKBOOKS

THANK YOU!

If you would like a digital copy of the materials presented today, or have further questions, please contact us!

> Email: akroeker<u>@htfc.ca</u> Phone: (204) 944-9907

> Manitoba CGPIO Email: ccinfo@gov.mb.ca

