

Northwest Territories Ice Jam Flood Mapping Guidelines V1.0

Jad Saade

Dan Healy

Hydrologist

Principal

GNWT

NHC

Overview

- Need for ice jam flood mapping guidelines [presented by Jad]
 - Ice jam flooding and flood mapping in NWT
- Ice Jam Flood Mapping Guidelines V1.0 [presented by Dan]
 - Workflow and highlights

Need for ice jam flood mapping guidelines

• **Ice jams** are accumulations of ice in a river that can lead to flooding. They are a natural part of winter river processes. Ice jams form when the ice

Alberta

Freedom To Create, Spirit To Achieve.

rise.

blocks the river flow, causing the water level to

- "While the ice jams themselves are more impressive in the Northwest, with the large rivers and thick ice, Ice jams have been a feature of Canadian life from the beginning." (Beltaos, 1995)
- Guidance was lacking, no standard Canadian ice jam flood mapping guideline.

Need for ice jam flood mapping guidelines

- Historically, ice jam flooding being major flood mechanism in the NWT.
- Significant cost and damage on communities and infrastructure.

• Ice Behavior - River ice regime/dynamics is a complicated field

of science.

Liard-Mackenzie Confluence at Fort Simpson, NWT (Edmonton Journal, 1989)

Ice jam flooding in NWT – Fort Simpson 2021

7 May 2021

Photo Credits: Roger Piling

Ice jam flooding in NWT – Fort Simpson 2021 10GC001 Gauge Photos

History of flood mapping in NWT

No Federal or Territorial Mapping

Federal mapping programs

FDRP – Flood Damage Reduction Program
FHIMP – Flood Hazard Identification and Mapping Program

Ice jam flood mapping guidelines V1.0

- Intended to inform on best practices for developing engineered flood hazard maps where ice jam flooding is the dominant flood mechanism.
- Complementary to the Federal Flood Mapping Guideline Series (FFMGS)
 - Program framework
 - LiDAR data acquisition
 - Hydrologic and hydraulic procedures
 - Geomatics
 - Flood damage estimation
 - Climate change
 - Bibliography and references for flood mitigation
- Evergreen

Methodology overview

- Data collection
- Data review and assessment
- Flood hydrology
- Flood hydraulics
- Flood mapping
- Climate change considerations

Data Collection

- Studies, reports, and accounts
- Hydrometeorologic
- Geospatial
 - Including Lidar acquisition
- Field data
 - Including survey program

Data Review and Assessment

- Review and assess studies, reports, accounts, hydrometric, geospatial, and field data.
- GAP ASSESSMENT
 - Assess adequacy of data to fulfill project requirements
 - Evaluate need to collect additional data
 - Develop methods for working with limited data

Flood Hydrology

- Ice regime
- Flood history
- Flood level frequency
 - Data preparation
 - DIRECT or INDIRECT METHODS
- Design flood frequencies

Flood Hydraulics

- Design scenarios
- Data preparation
- Model development
- Model implementation
- (Feedback to flood hydrology)
- Design flood levels feed into the mapping

Flood Mapping

- Base mapping
- Flood extents, depth, and elevation
 - Flood elevation surface
 - Flood elevation grid
 - Flood depth grid
 - Inundation extent
- Manual edits
- Map library
 - Inundation, hazard, risk maps

Climate Change Considerations

- Integrated throughout the workflow
 - Climate scenarios
 - Impacts on hydrology and hydraulics
 - Impacts on flood mapping
- Assessment is informed by the various study components

It is a guideline

- A guide to inform the project management team and technical experts
- As with any flood study you require a team with specialist expertise
 - Survey and geomatics
 - Flood hydrology
 - Flood hydraulics
 - Flood mapping
 - River ice

Thank you

Government of Canada

Natural Resources Canada (NRCan)

Environment and Climate Change Canada (ECCC)

Methodology – Companion Tables DATA COLLECTION

DATA COLLECTION					
STUDIES, REPORTS & ACCOUNTS	HYDROMETEOROLOGIC	GEOSPATIAL	FIELD DATA		
 Documented events 	Stream flow	Base maps	Survey plan		
 Prior flood studies 	Stream level	DEM / LiDAR	Survey control		
 Planning studies 	Direct discharge	Aerial imagery	River geometry		
 Design reports 	measurements	Radar satellite imagery	Highwater marks and ice scars		
 Regional studies 	Rating curves	Optical satellite imagery	Hydraulic structures		
 Hydrologic and hydraulic 	Meteorologic	Local mapping	Field notes, photos, and video		
models	Water temperature	Previous flood mapping	Ice jam observational		
 Indigenous Knowledge 	River ice	Datums and projections	information		
 Local accounts 					
 Media accounts 					
 Climate change studies 					
• Guidelines					

Methodology – Companion Tables DATA REVIEW & ASSESMENT

DATA REVIEW & ASSESSMENT				
STUDIES, REPORTS & ACCOUNTS	HYDROMETEOROLOGIC	GEOSPATIAL	FIELD DATA	
 Data extraction and collation 	Data quality	• Coverage	Survey control	
 Dominant ice jam processes 	Periods of record	Survey data comparison	• QA/QC	
 Confirm ice jam is dominant 	Representative events	Conventions and symbology	Bathymetry / bed survey	
flood mechanism (over open water)	Representative of study reach	Preliminary base maps and	Hydraulic structures	
water)		geodatabase	Flood control structures	
			Field notes, photos, and video	

GAP ASSESSMENT

- Assess adequacy of data collected for hydrology, hydraulics, and mapping.
- Assess the need to pursue collection of additional data that was identified during the data review (e.g., other published work, work in progress, additional local knowledge).
- Assess the need to collect additional monitoring, observational, or survey data.
- Develop methodology to rely on limited data.

Methodology – Companion Tables FLOOD HYDROLOGY

FLOOD HYDROLOGY

FLOOD HISTORY

- Overview of ice jam flood history and locations prone to flooding.
- Tabulated historical and observed ice-affected floods (dates, location, magnitude, and impacts).
- Detailed summary of major documented events with supporting information including:
- Sequence of events leading to the evolution of the ice jam flood event.
- Description of the ice jam development, the maximum flood condition, and ice jam recession.
- Information collected during the event including survey data and ground observations (e.g., water level profiles, photos, ice conditions), and aerial observations by plane, helicopter, and/or drone (e.g., river reach extent and nature of ice conditions).
- Post event information including survey data (e.g., highwater mark profiles, ice scars, shear walls), monitoring data (e.g., water levels), post processed data (satellite data, aerial imagery, ice mapping).

Methodology – Companion Tables FLOOD HYDROLOGY

FLOOD HYDROLOGY

ICE REGIME

- Identify hydro-climatic conditions characteristic to the study reach.
- Examine river morphology and identify locations of interest with respect to ice processes including hydraulic controls, steep sections, deep pools, sharp bends, geomorphic features, river encroachments.
- Characterize various ice processes in relation to the study reach.
- Determine causal factors for ice jam severity.
- Determine typical ice characteristics (thickness, roughness, type).

DATA PREPARATION • Hydrometric records • Measured data (highwater marks, trees scars) • Model input data (where synthesized data is included) DIRECT METHODS • Extreme value statistics • Frequency analysis • Modelling and data synthesis • Frequency analysis

Methodology – Companion Tables FLOOD HYDRAULICS

FLOOD HYDRAULICS					
 DATA PREPARATION River geometry Physical jam characteristics Calibration data Boundary conditions 	MODEL CONSTRUCTION & CALIBRATION • Model geometry • Jam stability parameters • Roughness • Calibration	FLOOD PROFILI SYNTHETIC FLOOD LEVELS • Calculate flood levels to support frequency analysis (if required)	FLOOD FREQUENCY LEVELS		

Methodology – Companion Tables FLOOD MAPPING

FLOOD MAPPING					
 BASE MAP PREPARATION Layout and scale Base data Model information Annotation Symbology 	 FLOOD EXTENTS (VECTOR DATA) Flood extents derived from flood profiles Refinements / adjustments 	DEPTH AND ELEVATION (RASTERIZED DATA) • Create water surface elevation and depth grids	MAP LIBRARY CREATIONInundation mapsHazard mapsRisk maps		

Methodology – Companion Tables CLIMATE CHANGE CONSIDERATIONS

CLIMATE CHANGE CONSIDERATIONS

- Determine climate change scenarios.
- Assess potential impacts of climate change scenarios on flood hydrology and flood hydraulics.
- Assess potential impacts of climate change scenarios on flood mapping results.