

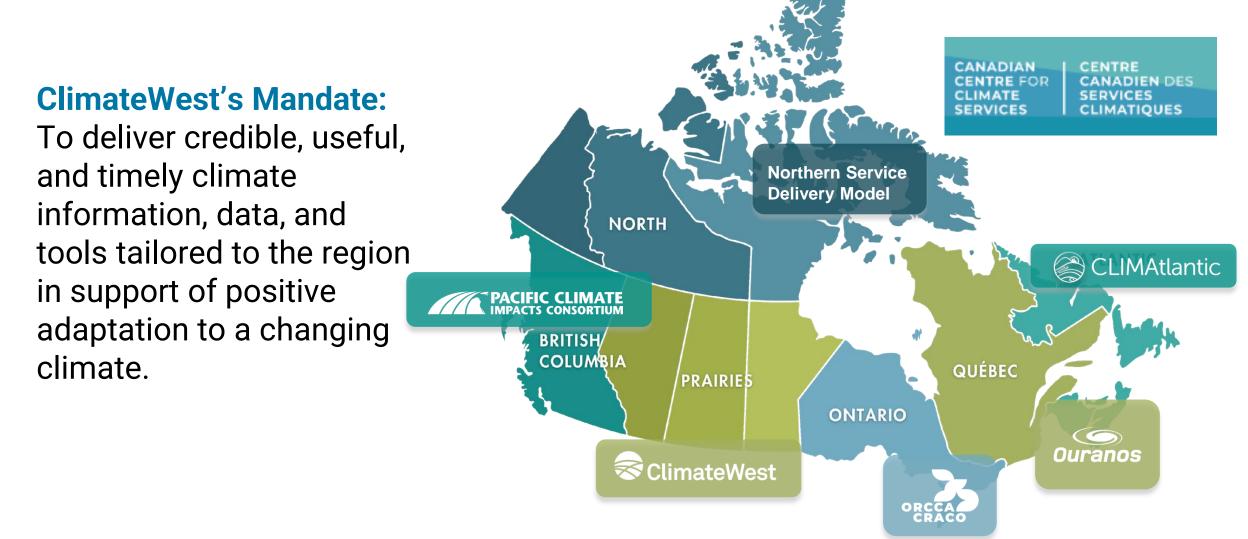
Manitoba Climate Resilience Training: How to Conduct a Climate Vulnerability and Risk Assessment

Elizabeth Shearer, Network Coordinator March 12, 2025

Acknowledgement

ClimateWest's work occurs on the traditional land of many Indigenous Nations and covers the Territories of Treaties 1 through 8, and 10.

Our office is located on Treaty 1 Territory, the historic meeting place of the Anishinaabeg, Cree, Inninewuk, Anishininiwag, Dakota and Dene, and the Homeland of the Métis Nations.


Overview

- ClimateWest
- Manitoba Department of Environment and Climate Change
- Q&A

Who is Climate West?

What does ClimateWest do?

Connect With Us

Help Desk: 204-995-6514 Email: info@climatewest.ca

X: @climatewest_ca LinkedIn: @ClimateWest Website: climatewest.ca Newsletter: scan QR code

How to Conduct Vulnerability and Risk Assessment

Webinar # 2 March 12, 2025

Manitoba.ca

Elaine Fox

Manager Climate Preparedness and Communications

Manitoba.ca

WEBINAR OUTLINE

MCRT Progress Recap: Webinar #1 (Climate Preparedness 101) MB's Climate Adaptation Planning Process Why do a Vulnerability & Risk Assessment Stage 1- Starting the Process: Considerations Stage 2: Vulnerability & Risk Assessment Climate Hazard Assessment Climate Impacts Assessment Climate Risk Assessment Key Takeaways

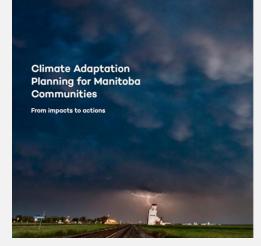
Climate Vulnerability and Risk Assessment Guidance for Manitoba Communities

Manitoba 🖤

Manitoba Climate Resilience Training (MCRT) Progress

Manitoba Climate Adaptation Initiatives Climate Adaptation and Disaster Mitigation Workshops

MCRT Webinar Series


OVERALL OBJECTIVE:

This three-webinar series will take you through the adaptation planning journey using free tools and resources developed under the Manitoba Climate Resilience Training (MCRT) Program.

- Gain the knowledge and skills to integrate climate considerations into planning and decision making which will help you prepare for hazards and take advantage of opportunities.

Climate Preparedness 101 – March 5, 2025 How to Conduct a Vulnerability and Risk Assessment (VRA) – March 12, 2025

Climate Adaptation Planning – March 19, 2025

Recap: Climate Preparedness 101: Key Takeaways

- Human activities are increasing greenhouse gas emissions in the earth's atmosphere and are driving global temperature rise.
- Models have demonstrated that Canada's climate has changed because of global temperature increase, impacting all regions, and providing opportunities.
- We have and will continue to experience increased frequency and severity of climate events.
- The climate will stabilize once we achieve and maintain net-zero global greenhouse gas emissions.
- We will not revert to past climate conditions and will adapt to the new realities.
- Inaction is more costly than taking action. The Climate Risk Institute states for every \$1 invested, you save \$5 in future costs.
- It is important to consider climate change risk and opportunities in decision-making.
- Climate services are available in Manitoba and across the Prairies region and Canada to support climate-smart decision-making and resilient infrastructure design.
- Being prepared for a changing climate helps to build resilience for a safe, healthy and prosperous Manitoba.

Manitoba's Climate Adaptation Planning Guidebook: From Impacts to Actions

Climate Vulnerability and Risk Assessment Guidance for Manitoba Communities

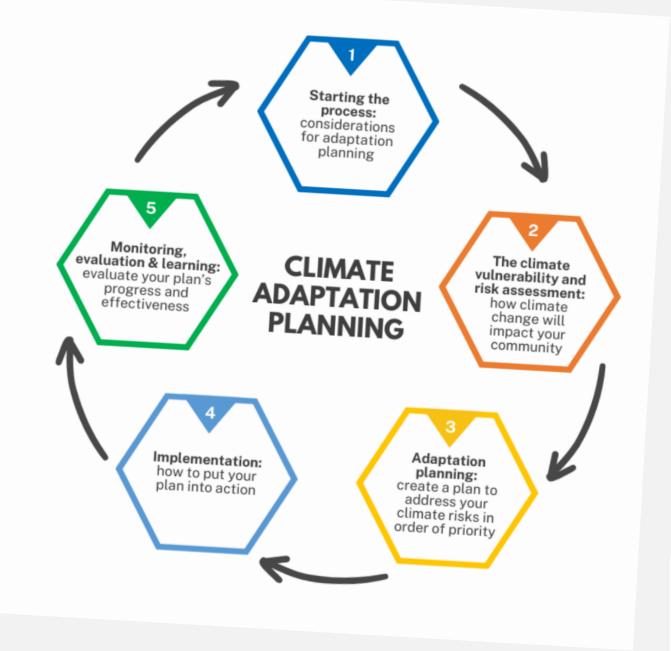
From imports to actions

How to Use the Climate Atlas of Canada

Climate Adaptation Workbook for Manitoba Communities

From impacts to actions

Climate Adaptation Planning for Manitoba Communities


From impacts to actions

Manitoba 🖘

Manitoba's Climate Adaptation Planning Process

Why do a Vulnerability & Risk Assessment?

- Promotes informed decision making by providing evidencebased, data-driven information.
 - Ensuring actions and policies are based on solid knowledge rather than assumptions.

Moves knowledge into actions.

 support the development of actionable plans and strategies that minimize risks and prepare for a changed climate

Supports targeted funding and budgeting.

- helps to identify most at-risk sectors and potential impacts of climate change, ensuring efficient resource allocation that addresses the most critical vulnerabilities.
- Increases desirability for external investment.
 - a proactive/structured approach to managing climate risk fosters stability for business, citizens and investments

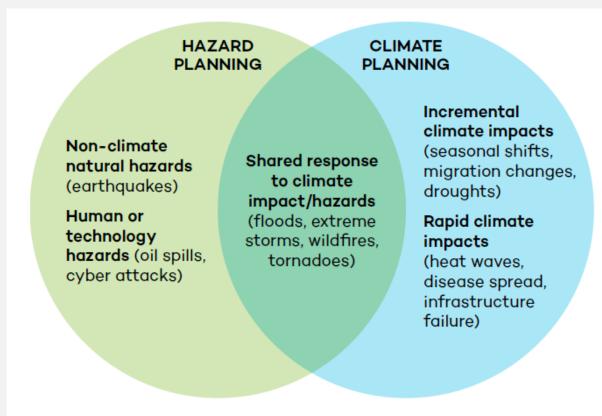
Helps create safe, stable and sustainable communities.

 A sound VRA that identifies critical vulnerabilities and risks and translated into actionable strategies helps build long-term safety, stability and sustainability of sectors and communities.

Financial Sector

Bank of Canada financial system review template

- Includes a section on climate change
- Includes both physical issues, such as extreme weather, as well as transition issues, such as sudden policy moves
- Alarms are sounding on the need for global financial systems to account for and disclose, climate risk.


Moody's and other rating institutions

- Incorporate the impact of climate risks and opportunities on business and governments and how they affect revenues, costs, reputations and impacts for commercial lenders.
- Venture Capital Investment
 - They use preparedness actions, to evaluate resiliency and stability for investment.
- Innovative Financial tools
 - Catastrophe or Green Bonds an offset to traditional insurance industry which is stepping back from certain situations.
 - DFA is changing

Integration of adaptation planning into hazard mitigation planning

Source: Climate Action and Energy Innovation Division, 2024.

Applying adaptation to municipal processes

Source: Manitoba Climate Resilience Training, 2023.

Stage 1: Considerations for Starting the Process:

Just Start!

- Not everyone's planning process is the same.
- Look for leadership support by council, community orgs or individuals.
- Budget for the plan and it's implementation

Worksheet 1: Leadership Advisory Committee Members

□ Worksheet 2: Vision, Goals and Objectives

Worksheet 3: Resources for the Adaptation Plan

Worksheet 4: Scope of your Adaptation Plan

Worksheet 5: Community Profile

Worksheet 6: Team Members and their Roles

Worksheet 7: List of Available Information

Worksheet 8: List of Existing Monitoring, Evaluation and Learning Tools

Worksheet 9: Work Plan to Prepare the Adaptation Plan

Stage 2: Climate vulnerability and risk assessment

Purpose: Understanding how a changing climate will impact your community will help you create a priority list of climate risks to prepare for and include in your Adaptation **Plan and Budget (Stage** 3)

1. Climate Hazard Assessment

2. Climate Impact Assessment

3. Climate Risk Assessment

Climate risk is the interaction of hazards, exposure and vulnerability

Guidebook Glossary

Glossary

- Adaptation
 Any effort or action to respond to actual or anticipated impacts of climate change that minimizes the effects and reduces the risk of climate change on infrastructure, natural ecosystems and social systems (Canadian Council of Ministers of the Environment [CCME], 2021).
- Adaptation planning "The process and mechanism of incorporating climate risks and anticipated outcomes in the development of planning documents so as to make communities more resilient to the potential impacts of climate change" (Manitoba Climate Resilience Training, 2021, p. 1).
- Adaptive capacity The ability of infrastructure, natural ecosystems and social systems to adjust to changing environmental conditions (like climate variability or extreme weather events), minimize possible damage, take advantage of opportunities, or cope with, adapt to, or recover from the consequences (CCME, 2021).
- Climate change A change in long-term weather patterns due to natural phenomena and human activities (e.g., use of fossil fuels and release of carbon dioxide) that affect the chemical composition of the atmosphere through the accumulation of greenhouse gases. Climate change is contributing to a rising global temperature, changing rain and snowfall patterns, warming oceans and many other impacts (CCME, 2021).
- Climate hazard A climate-related event that can put infrastructure, natural ecosystems and social systems at risk and produce negative consequences. Climate hazards can be rapid-onset events, like overland floods from a rainstorm, or slow-onset events, like rising temperatures. Other examples of climate hazards include droughts, high temperatures, rain, high winds, tornadoes, wildfires, landslides, sea-level rise and hail (CCME, 2021).

Climate Hazard: A climate-related event that can put infrastructure, natural ecosystems and social systems at risk and produce negative consequences. Flood

Climate Impact: The effects of a climate hazard (either currently or anticipated in the future) on infrastructure, natural ecosystems and social systems.

Contaminated Well

Climate Consequences: Something that occurs because of a climate impact.

Emergency Room increase

Climate Risk: The potential for negative or positive consequences for infrastructure, natural ecosystems and social systems due to a climate hazard.

Likelihood x Severity

Climate Hazard Assessment

The goal of this step is to:

- Identify the climate hazards that already affect or will affect your community
- Understand how the climate hazards are predicted to change.

Single Event vs. Slow Onset Climate Hazards

Single-event climate	hazards	Slow-onset climate hazards			
Winds (strong) Heavy snowfall Extremely hot days Lightning Ice accumulation Freezing rain Rain on snow Heat waves Thunderstorms	Extreme cold Wildfire/grassfire Tornadoes Blizzards Floods Hail Fog Heavy rainfall Multi-year drought	Length of frost-free period; extension or shortening of snowpack season Warming winters and loss of extreme cold Length of growing season Changes to stream flows and ice-breakup dynamics Diseases transmitted by animals or insects Freeze-thaw cycles			

Source: Adapted from The Resilience Institute & All One Sky Foundation, 2019.

Single- Event Hazards

These are sudden, discrete events that occur over a short period, such as hours or days.

Slow-Onset Climate Hazards

These are gradual changes in climate that occur over extended periods, often years or decades.

Single Event vs. Slow Onset Climate Hazard Impacts

Single-Event Hazard Impacts They can cause immediate and severe damage to infrastructure, loss of life, and economic disruption.

Slow-Onset Hazard Impacts

They can lead to long-term environmental changes and socioeconomic impacts, such as loss of arable land, displacement of communities, and loss of biodiversity

PNUMA

Biodiversity Loss

We are currently living a "biodversity crisis" losing species on a daily basis and 1,00 times quicker than under natural circumstances.

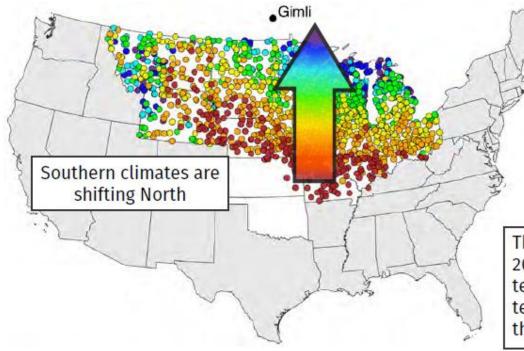
Identify trends in emerging climate

Using Climate Cards

- Provides a scaled down professional forecast
- Updated by the University of Winnipeg
- Allows decision makers reliable information on how the climate is changing

Climate Cards for Manitoba RMs

https://climateatlas.ca/climate-cards-manitoba-rms



Forecasts by Emission Levels

Change		Recent Past	1oth percentile	2051-2080 Mean	90th percentile High	Direction of change
	Typical hottest summer day	33.7 ° C	35.1 °C	38.8 °C	42.6 °C	↑
– JL (Typical coldest winter day	-37.3 ° C	-34.6 °C	-29.3 °C	-23.7 °C	\uparrow
	Number of +30 °C days per year	12	24	51	76	
	Spring precipitation	120 mm	77 mm	140 mm	216 mm	1
	Summer precipitation	229 mm	124 mm	222 mm	344 mm	\checkmark
	Number of below-zero days per year	191	130	153	174	1
	Number of +20 °C nights per year	1	4	18	35	↑

What is our Future Climate?

Summer Average Maximum Temperature

Analogue Years (Average Temp)

1991 - 2005 (23.9 °C)
2006 - 2020 (24.6 °C)
2021 - 2035 (25.5 °C)
2036 - 2050 (26.3 °C)
2051 - 2065 (27.6 °C)
2066 - 2080 (28.9 °C)
2081 - 2095 (30.1 °C)

These are American stations whose 2006-2020 average summer maximum temperatures are within 0.5°C of the temperatures projected for Gimli in these 15-year periods.

Source: Prairie Climate Centre, 2024.

Alexandra Bourne

Senior Policy Advisor Climate Preparedness and Communications

Manitoba.ca

1. Climate Hazard Assessment

KEY STEPS

Develop a List of Climate Hazards

What weather phenomena or extreme climate event have occurred in your area in the past 30 years?

Have you observed any recent trends in the last decade. Frequency (number of occurrences) or Severity (size and scale) of local climate hazards?

Are there new potential hazards moving your way such as invasive species or seasonal shifts

Morksheet 10. List of climate hazards

Example:

Climate hazard	Frequency	Magnitude	Duration		
Heat waves	Annually, in July and August	Night temperatures of >20°C; day temperatures >30°C	3–4 days at a time		

Climate hazard	Frequency	Magnitude	Duration		

Define Statements for each Hazard

Worksheet 11. Climate hazard statements

Example:

Climate hazard	How is the hazard projected to change? Climate Hazard Statement					
Climate hazara						
Heat waves	 Average annual number of heat waves increases from 1.9 to 4.2; an average of 2.3 more heat waves each year. Average length of heat waves increases from 3.5 days to 5.3 days; the average heat wave is 1.8 days longer. Average summer temperature increases from 18.6°C to 20.7°C; the average summer temperature is 2.1°C warmer. Average number of days per year above 30°C increases from 17.3 to 34.5; there are 17.2 more days per year above 30°C. 					
	above 30°C increase, future heat waves are expected to be 5 days longer and hotter than in previous years.					

A Heat wave is typically defined as a three or more consecutive days with temperatures reaching 32 degrees or higher

2. Climate Impact Assessment

PURPOSE:

- Find the impacts to the climate hazards you have identified
- Consider how these impacts might change in the future
- Identify potential consequences of these changes

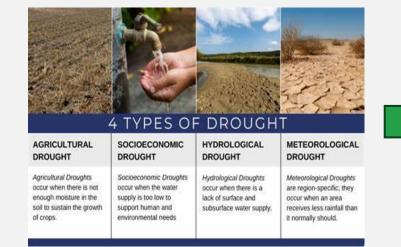
It can also help you better understand the cause- and- effect relationships between hazards, impacts and consequences for your community.

KEY STEPS

- Develop an inventory of climate impacts
- There are multiple impacts to hazards
- There are multiple solutions to impacts
- Think in a larger collective area

Develop an inventory of climate impacts

Worksheet 12. List of the impacts of climate hazards


Example:

Climate hazard	Heat wave: 7 or more consecutive days of +30°C weather each					
	year					
Changes to climate	Average annual number of heat waves increasing from 1.9 to 4.2					
hazards	Average length of heat waves increasing from 3.5 days to 5.3 days					
	Average summer temperature increasing from 18.6°C to 20.7°C					
	Average number of days above +30°C increasing from 14 to 31					
Climate hazard statement	As the average summer temperatures and the number of days above 30°C increase, future heat waves are expected to be 5 days longer and hotter than in previous years.					
What are the impacts of	More hot days and nights					
this hazard?	Lower water supply					
	Loss of soil moisture					
	Higher chance of wildfires					
	Higher chance of worse drought conditions					

Climate consequences

Climate Consequence Something that occurs in response to a particular climate impact.

Impact Crop failure

Categories and sectors to consider

Community & people

and emotional well-being

Have climate hazards interrupted service delivery or the economy

> Will climate impacts increase demand for a resource or service?

Critical services Loss of services such as transportation, water, electricity, etc.

Fatalities, injuries, medical treatment, hospitalization, temporary or permanent displacement, mental health

Buildings and infrastructure Damage to buildings, equipment vehicles, infrastructure

Local economy

Disruption or loss of ability to produce, consume, and trade goods and services, and to generate income supporting livelihoods

Natural environment

Impacts to land, water, air, plants, and animals, and the provision of ecosystem services

What

consequences have resulted from climate hazards in the past 30 years?

What groups are sensitive to hazards. Impacts, consequences

List the consequences of climate hazards (heat wave)

Morksheet 13. List of the consequences of climate hazards

Complete a copy of Worksheet 13 for each climate hazard you considered in Worksheets 11 and 12.

Example:

Hazard	Heat waves
(p) Community & people	 More cases of heat exhaustion, heat stroke and other heat-related illnesses in people who work outdoors (e.g., in construction, landscaping), seniors and other vulnerable populations Cancellation of outdoor events, sports and gatherings
Critical services	 Higher demand for emergency medical services Increased use of air conditioning and other cooling equipment may strain the electrical grid and cause localized brownouts/ blackouts
Buildings & infrastructure	 Cracks in building foundations Heat damage to roads Equipment failures from overheating
Local economy	 Financial pressure on farmers and agricultural businesses Overwhelming demand for water-based attractions Tourism industry disruptions due to fire bans, water restrictions, etc. Agricultural crop damages and decrease in seasonal quality and quantity
* Natural environment	 Stresses to plant and animal life due to heat and water shortages Lower water quality and quantity leading to boil-water advisories Demand for irrigation exceeds water supply

BEAT THE HEAT: Extreme Heat Heat related deaths are preventable

WHAT:

Extreme heat or heat waves occur when the temperature reaches extremely high levels or when the combination of heat and humidity causes the air to become oppressive.

Stay hydrated with water, Stay cool in an avoid sugary beverages air conditioned area

> Wear light-weight, light colored, loose fitting clothes

98

3. Climate Risk Assessment

A Classic Risk Assessment Matrix

	5 Very Likely	Medium Priority	Medium-High Priority	Medium-High Priority	High Priority	High Priority	Likelihood Rank	Definition	Severity score	Definition
-	4 Likely	Medium-Low Priority	Medium Priority	Medium-High Priority	Medium-High Priority	High Priority	1. Very unlikely	Occurs longer than 10 years	1. Negligible	Consequence has minimum loss, injury, or damage
po	3 Possible	Medium-Low Priority	Medium-Low Priority	Medium Priority	Medium-High Priority	Medium-High Priority	2. Unlikely	Occurs every 5 years	2. Marginal	Consequence has minor loss, injury, or damage
Likelihood	2 Unlikely	Low Priority	Medium-Low Priority	Medium-Low Priority	Medium Priority	Medium-High Priority	3. Possible	Occurs annually	3. Major	Consequence has considerable loss, injury, or damage
	1 Very Unlikely	Low Priority	Low Priority	Medium-Low Priority	Medium-Low Priority	Medium Priority	4. Likely	Occurs every 6 months	4. Serious	Consequence has significant loss, injury, or damage
	Risk Assessment Matrix	1 Insignificant	2 Minor	3 Moderate	4 Major	5 Catastrophic	5. Very likely	Occurs weekly or monthly	5. Catastrophi	Consequence has extensive loss, injury and damage
_	Severity								c	

Severity and Likelihood of Hazards, their Impacts & Consequences

Worksheet 14. Severity and likelihood of the consequences of each climate hazard

Example:

Climate hazard	Consequence	Severity	Likelihood
Heat wave	Seniors/vulnerable community members suffer heat stroke	4	3
	Cancellation of outdoor events, sports and gatherings	2	2
	Equipment failures from overheating	4	2

Morksheet 15. Risk assessment matrix and risk levels

Complete a risk assessment matrix for each climate hazard. Refer to Table 7 and define the risk level for each climate risk plotted in the matrix.

Hazard: 5 Very likely 4 Likely Likelihood 3 Possible 2 Unlikely 1 Verv unlikely 1 2 3 4 5 Risk Negligible Marginal Catastrophic Major Serious Assessment Matrix Severity

Risk Assessment and Risk Levels

Risk Management is not new.

Risk management is already being applied in your financial documents and audited statements.

Incorporating Climate is just incorporating additional information to your risk system

The templates and guidebooks we are providing help you to decide which risks are low, medium, or high and based on this, you can determine which you want to use during the stage 3 adaptation planning.

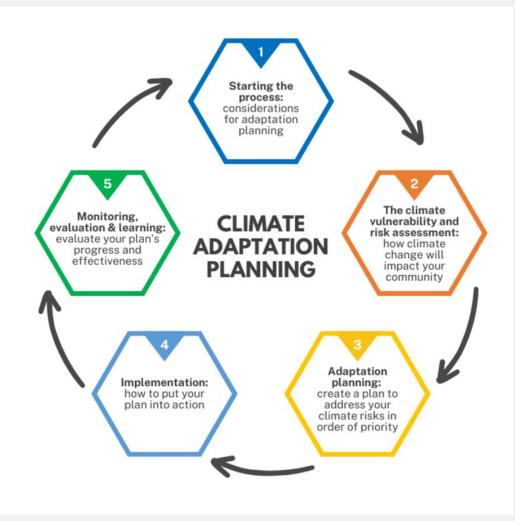
KEY STEPS

Assess how severe and likely the hazards might be for your community

Assess the Impacts & Consequences that the climate hazard will have in your community

Calculate the risk levels and prioritize the risks for policy, planning, and budget responses

Climate Service Organizations



- Effective Vulnerability & Risk Assessment (VRA) requires the engagement of diverse stakeholders, including local communities, government agencies, Indigenous, private and other sectors, to incorporate various perspectives and.
- A structured approach helps examine the cause-and-effect relationships between climate hazard, impacts and consequences, fostering a comprehensive and effective risk management process.
- Assessing climate risks involves evaluating the likelihood and severity of climate hazards and the impacts/consequences that will occur on varied sectors, which helps prioritize actions to mitigate these risks.
- VRA is an evidence-based, data driven report verifying that you are considering climate change in your planning and decision making.
- Understanding your Vulnerability and Risk helps to build resilience for a safe, healthy and prosperous Manitoba.

Now you're ready to move to Adaptation planning

Climate Adaptation Planning for Manitoba Communities Promimports to actions

Manitoba 🗫

Next MCRT Webinar 2025

ClimateWest

Manitobo

Climate Adaptation Planning – March 19, 2025

Climate Adaptation Planning for Manitoba Communities

No west for the second

From impacts to actions

 WEBINAR SERIES

 Manitoba Climate Resulience Training

 Image: Series of the series of th

Thank you!!

Elaine Fox Manager, Climate Adaptation Elaine.Fox@gov.mb.ca

Alexandra Bourne Senior Policy Advisor Alexandra.Bourne@gov.mb.ca

Ramon Sales Senior Policy Analyst Ramon.Sales@gov.mb.ca

Climate Action and Energy Innovation Division Manitoba Environment and Climate Change E: <u>ccinfo@gov.mb.ca</u> Ph: 204-945-7246

Manitoba.ca

